K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

B A C H D E F

a. C/m tam giác HBA đồng dạng tam giác ABC

Xét tam giác HBA và tam giác ABC có: 

\(\widehat{BHA}=\widehat{BAC}\)= 90( gt)

\(\widehat{ABC}\)góc chung

Suy ra: \(\Delta HBA\approx\Delta ABC\left(g.g\right)\)

b. 

Áp dụng tính chất đường phân giác AD vào tam giác ABC ta được:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)

\(\Rightarrow\)BD = \(\frac{3}{4}DC\)

Tương tự: \(\frac{AE}{BE}=\frac{AD}{BD}=\frac{AD}{\frac{3DC}{4}}=\frac{4AD}{3DC}\)

\(\frac{FA}{FC}=\frac{AD}{DC}\)

Ta thấy: \(\frac{4AD}{3DC}>\frac{AD}{DC}\)nên \(\frac{AE}{BE}>\frac{FA}{FC}\)

hay AE.FC > BE. FA(đpcm)

9 tháng 5 2022

 

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6

21 tháng 9 2022

Tự vẽ hình nha

a) xét tam giác HAB và tam giác ABC

góc AHB = góc ABC

góc CAB : chung

Suy ra : tam giác AHB ~ tam giác ABC ( g-g )

b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :

AC2 + AB2 = BC2

162 + 122 = BC2

400          = BC2

=> BC = \sqrt{400}= 20 ( cm )

ta có tam giác HAB ~ tam giác ABC ( câu a )

=> \frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}

=> AH = \frac{12.16}{20}=9,6( cm )

Độ dài cạnh BH là 

Áp dụng định lí py - ta - go vào tam giác HBA ta được : 

AH+ BH2 = AB2

BH2          = AB2 - AH2

BH2             = 122 - 9,62

BH2              = 51,84 

=> BH       = \sqrt{51,84} = 7,2 ( cm )

c) Vì AD là đường phân giác của tam giác ABC nên :

\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}

                    <=>   \frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}

                    <=>   AB.CD               =   AC(BC - CD)

                    hay   12CD                 =   16.20 - 16CD

                     <=>  12CD+ 16CD      =   320

                     <=>             28CD      =   320

                     <=>                 CD     =    \frac{320}{28}\approx11.43\left(cm\right)

Độ dài cạnh BD là :

BD = BC - CD

BD = 20 - \frac{320}{28}\approx 8,57 ( cm )

18 tháng 4 2023

loading...  

15 tháng 4 2016

xét Tam giác HBA và Tam giác ABC có
 B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6
 

5 tháng 7 2020

Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T

a,Xét ΔHAB và ΔABC

\(\widehat{BHA}=\widehat{BAH}=90^o\)

Góc B chung

\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)

c,Xét ΔABC ta có:

BC2=AC2+AB2

BC2=162+122

BC2=400

BC=√400=20cm

Ta có ΔHAB~ΔABC(câu a)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

a.Xét \(\Delta HBA\)và \(\Delta ABC\)

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{B}\) chung

Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)

b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)

\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow AH.BC=AB.AC\)

c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có

\(BC^2=AB^2+AC^2\)

\(BC^2=12^2+16^2\)

\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)

\(BC=20cm\)

Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)

\(\Rightarrow AH=\frac{12\times16}{20}\)

\(\Rightarrow AH=9,6cm\)

Chúc bạn học tốt.Phần d mình chưa giải đc nha

28 tháng 6 2020

A B C D H E K I F

a) Xét t/giác HBA và t/giác ABC

có: \(\widehat{B}\):chung

 \(\widehat{BHA}=\widehat{A}=90^0\)(gt)

=> t/giác HBA đồng dạng t/giác ABC (g.g)

b) Xét t/giác ABC vuông tại A, ta có:

BC2 = AB2 + AC2 (định lí Pi - ta - go)

=> AC2 = BC2 - AB2 = 102 - 62 = 64

=> AC = 8 (cm)

Ta có: t/giác HBA đồng dạng t/giác ABC

=> HB/AB = AH/AC = AB/BC

hay HB/6 = AH/8 = 6/10 = 3/5

=> \(\hept{\begin{cases}HB=\frac{3}{5}.6=3,6\left(cm\right)\\AH=\frac{3}{5}.8=4,8\left(cm\right)\end{cases}}\)

c) Xét tứ giác AIHK có \(\widehat{A}=\widehat{AKH}=\widehat{AIH}=90^0\)

=> AIHK là HCN => \(\widehat{AIK}=\widehat{AHK}\)(cùng = \(\widehat{IKH}\)) (1)

Ta có: \(\widehat{AHK}+\widehat{KHC}=90^0\)(phụ nhau)

 \(\widehat{KHC}+\widehat{C}=90^0\)(phụ nhau)

=> \(\widehat{AHK}=\widehat{C}\) (2)

Từ (1) và )2) => \(\widehat{AIK}=\widehat{C}\)

Xét t/giác AKI và t/giác ABC

có: \(\widehat{A}=90^0\): chung

 \(\widehat{AIK}=\widehat{C}\)(cmt)

=> t/giác AKI đồng dạng t/giác ABC
=> AI/AC = AK/AB => AI.AB = AK.AC 

d) Do AD là đường p/giác của t/giác ABC =>  \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{BC}{DC}-1\)

<=> \(\frac{10}{DC}-1=\frac{6}{8}\) <=> \(\frac{10}{DC}=\frac{7}{4}\) <=> \(DC=\frac{40}{7}\)(cm)

=> BD = 10 - 40/7 = 30/7 (cm)

DE là đường p/giác của t/giác ABD => \(\frac{AD}{BD}=\frac{AE}{EB}\)(t/c đg p/giác)

DF là đường p/giác của t/giác ADC => \(\frac{DC}{AD}=\frac{FC}{AF}\)

Khi đó: \(\frac{EA}{EB}\cdot\frac{DB}{DC}\cdot\frac{FC}{FA}=\frac{AD}{DB}\cdot\frac{AB}{AC}\cdot\frac{DC}{AD}=\frac{AB\cdot DC}{BD.AC}=\frac{6\cdot\frac{40}{7}}{8\cdot\frac{30}{7}}=1\) (ĐPCM)