Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)
b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)
=>HF=2HE
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBA vuông tại C có CH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}CH^2=HA\cdot HB\\CA^2=HA\cdot AB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=6\left(cm\right)\\CA=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHA vuông tại H có HE là đường cao ứng với cạnh huyền CA, ta được:
\(CE\cdot CA=CH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHB vuông tại H có HF là đường cao ứng với cạnh huyền CB, ta được:
\(CF\cdot CB=CH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(CE\cdot CA=CF\cdot CB\)
hay \(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
Xét ΔCEF vuông tại C và ΔCBA vuông tại A có
\(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
Do đó: ΔCEF\(\sim\)ΔCBA
B H F C E A
a) Xét tam giác AHB và tgiac CHA có:
góc AHB = góc CHA = 900
góc HAB = góc HCA (cùng phụ HAC)
suy ra: tgiac AHB ~ tgiac CHA (g.g)
b) Áp dụng Pytago ta có:
AH2 + BH2 = AB2 => BH2 = AB2 - AH2 = 81 => BH = 9
Áp dụng hệ thức lượng ta có:
AB2 = BH.BC => BC = AB2 / BH =25
=> HC = BC - BH = 25 - 9 = 16
Áp dụng hệ thức lượng ta có:
AC2 = HC . BC => AC2 = 400 => AC = 20
c) Xét tgiac CFE và tgiac CAB có:
góc C chung
CF / CA = CE / CB (4/20 = 5/25 )
suy ra: tgiac CFE ~ tgiac CAB (c.g.c)
=> góc CFE = góc CAB = 900
Vậy tgiac CFE vuông tại F
d) Chứng minh CE.CA=CF.CB
Giúp mình với