K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

a: BC=BH+CH

=4+9=13

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=4\cdot9=36\)

=>AH=6

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{4\cdot13}=2\sqrt{13}\\AC=\sqrt{9\cdot13}=3\sqrt{13}\end{matrix}\right.\)

b: ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AM\cdot AB=AN\cdot AC\)

16 tháng 10 2023

Có hình vẽ ko ạ