K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
D
29 tháng 6 2018
Ta có: HC - HB = 9 \(\Rightarrow\)HC = HB + 9
Theo hệ thức lượng 2 trong tam giác vuông; ta có:
\(AH^2=BH\times CH=BH\times\left(BH+9\right)\)
\(\Leftrightarrow6^2=BH^2+9BH\)
\(\Leftrightarrow BH^2+9BH-36=0\)
\(\Leftrightarrow BH^2-3BH+12BH-36=0\)
\(\Leftrightarrow\left(BH-3\right)\left(BH+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}BH=3\left(tm\right)\\BH=-12\end{cases}}\)
\(\Rightarrow CH=9+BH=9+3=12\)
Vậy BH = 3cm; CH = 12 cm
21 tháng 7 2023
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
NH
1
Xét tam giác ABC vuông tại A, đường sao AH
Có AH2 = BH.HC (đ/lý về cạnh và đường cao trong tam giác vuông)
Thay AH=4a, BH=2a, ta được:
(4a)2 = 2a.HC
16a2 = 2a.HC
=> HC = 16a2 :2a
HC = 8a
Mà BC = BH + HC
=> BC = 2a + 8a = 10a
Lại có AB2 = BH.BC (đ/lý về cạnh và đường cao trong tam giác vuông)
Thay BH = 2a, BC = 10a, ta được:
AB2 = 2a.10a
= 20a2
=> AB = \(\sqrt{20a^2}\)
= \(2\sqrt{5}a\)(cm)
Lại có AC2 = HC.BC (đ/lý về cạnh và đường cao trong tam giác vuông)
AC2 = 8a.10a
AC2 = 80a2
=>AC = \(\sqrt{80a^2}\)
= \(4\sqrt{5}a\) (cm)
Theo tỉ số lượng giác của góc nhọn, ta có :
tan \(\widehat{ABC}\)= \(\frac{AC}{AB}\)
tan \(\widehat{ABC}\)= \(\frac{4\sqrt{5}a}{2\sqrt{5}a}\)
tan \(\widehat{ABC}\)= 2
=> \(\widehat{ABC}\)= 63 độ
Vậy HC = 8a
\(\widehat{ABC}\)= 63 độ
Mình không giỏi toán nên cx ko chắc làm đúng ko, sr
À quên mất, bỏ cái phần tính góc ABC đi bạn, mình quên mất @@