K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE và DA=DE
hay BD là đường trung trực của AE

b: Ta có: AD=DE

mà DE<DC

nên AD<CD

23 tháng 6 2020

tự kẻ hình nha:3333

a) xét tam giác ABD và tam giác EBD có

ABD=EBD(gt)

BD chung

BAD=BED(=90 độ)

=> tam giác ABD= tam giác EBD(ch-gnh)

=> AB=BE( hai cạnh tương ứng)

đặt K là giao điểm của BD và AE

xét tam giác ABK và tam giác EBK có

AB=EB(cmt)

ABK=EBK(gt)

BK chung

=> tam giác ABK= tam giác EBK(cgc)

=> AK=EK( hai cạnh tương ứng)=> K là trung điểm của AE=> BD là trung tuyến AE

b) xét tam giác ABC và tam giác EBF có

ABE chung

AB=EB(cmt)

BAC=BEF(=90 độ)

=> tam giác ABC= tam giác EBF(gcg)

=> AC=EF( hai cạnh tương ứng)

từ tam giác ABD= tam giác EBD=> AD= ED( hai cạnh tương ứng)

ta có AC-AD=EF-ED=> DC=DF

c) áp dụng định lý pytago vào tam giác vuông DEC=> DC^2=ED^2+EC^2

=> DC^2> DE^2

mà ED=AD=> DC^2> AD^2=> DC>AD( DC,AD>0)

23 tháng 6 2020

Hình bạn tự vẽ nhé

a. Xét hai tam giác vuông ABD và tam giác EBD có 

          góc ABD = góc EBD = 90độ

          cạnh BD chung 

          góc ABD = góc EBD [ vì BD là pg góc B ]

Do đó ; tam giác ABD = tam giác EBD [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)BA = BE nên B thuộc đường trung tuyến của  AE 

 và DA = DE nên D thuộc đường trung tuyến của AE 

\(\Rightarrow\)BD là đường trung tuyến của AE 

b.Xét tam giác ADF và tam giác EDC có

         góc DAF = góc DEC = 90độ

        DA = DE [ theo câu a]

       góc ADF = góc EDC [ đối đỉnh ]

Do đó ; tam giác ADF = tam giác EDC [ cạnh góc vuông - góc nhọn ]

\(\Rightarrow\)DF = DC [ cạnh tương ứng ]

c.Xét tam giác DEC vuông tại E nên 

 DE bé hơn DC 

mà DE = AD [ theo câu a]

\(\Rightarrow\)AD bé hơn DC

học tốt

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

c: Xét ΔBFC có

FE,CA là đường cao

FE cắt CA tại D

=>D là trực tâm

=>BD vuông góc FC

1 tháng 5 2022

lag a ban 

1 tháng 5 2022

ko pk dùng hiệu ứng á

3 tháng 8 2021

undefined

Xét ΔBAD và ΔBDE có:

BD là cạnh chung

B1=B2 (BD là tia phân giác của \(\widehat{B}\))

BA = BE (GT)

Nên ΔBAD= ΔBDE (c.g.c)

=>\(\widehat{ADB}=\widehat{BDE}\)

Ta có:\(\widehat{ADB}+\widehat{ADF}=\widehat{BDF}\)

         \(\widehat{BDE}+\widehat{EDC}=\widehat{BDC}\)

Mà :\(\widehat{ADB}=\widehat{BDE}\)(CMT)

        \(\widehat{ADF}=\widehat{EDC}\)( 2 góc đối đỉnh)

=>\(\widehat{BDF}=\widehat{BDC}\)

Xét ΔBDF và Δ BDC, có:

\(\widehat{BDF}=\widehat{BDC}\)

BD là cạnh chung

B1=B2

Nên ΔBDF=ΔBDC (g.c.g)

=>DC = DF

b)Ta có:ΔEDC vuông tại E=> DC là cạnh lớn nhất hay DC>DE

MÀ DE=AD (ΔBAD và ΔBDE)

=> AD< DC

 

3 tháng 8 2021

c) Ta có BE=BA=>ΔBEA cân tại B

Mà BD là tia phân giác=>BD là đường trung trực

Vì :ΔBDF=ΔBDC=>BF=BC 

=>ΔBFC cân tại B=>\(\widehat{C}=\widehat{F}\)

Ta có:\(\widehat{B}+\widehat{C}+\widehat{F}=180^o\)

=>\(\widehat{B}+\widehat{C}.2=180^O\)

=>\(\widehat{C}=\dfrac{180^O-\widehat{B}}{2}\)(1)

vÌ ΔBAE  cân tại B

Tương tự ta có:

\(\widehat{E}=\dfrac{180^o-\widehat{B}}{2}\)(2)

Từ (1) và (2)=> \(\widehat{E}=\widehat{C}\)

Mà 2 góc này ở vị trí đồng vị=>AE // FC

1 tháng 5 2019

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

15 tháng 2 2021

san8iiiiii