K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2016

1, Xét tứ giác ABDC có :

M là trung điểm AD 

Vì : DM=MA

Và M là trung điểm BC

Vì : BM=MC

=> AD và BC cắt nhau tại trung điểm mỗi đường

Hay ABCD là HBH

Mà HBH có 1 góc vuông là hình chữ nhật

Vậy đpcm

2a, Xét tam giác BHA có  

BE=EH

Và AN=NH

=> EN là đtb của tam giác BHA 

=> EN=1/2BA

Và EN//AB

Mà : BA//DC (Vì ABCD là HCN)

Nên : EN//DF  (1)

Ta lại có : DF=1/2DC ( DF=FC)

Mà : AB=DC ( Vì ABCD là HCN)

Nên : DF=1/2AB

Mà : EN=1/2AB

=> DF=EN   (2)

Từ (1)(2) suy ra : EDNF là hình bình hành

2b, mình không biết làm

Nhớ k mình nha !

20 tháng 11 2016

1. Ta có: M là trung điểm của BC, M là trung điểm của AD => ABDC là hình bình hành

Xét tam giác ABC vuông tại A có AM là trung tuyến => AM=1/2 BC mà AM=MD => MD = 1/2 BC => tam giác BDC vuông tại D

Xét hình bình hành ABDC có góc D= 90* => ABDC là hình chữ nhật

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

12 tháng 12 2023

loading...  loading...  loading...  loading...  

12 tháng 12 2023

loading...  a) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (∆ABC vuông tại A)

⇒ ABDC là hình chữ nhật

b) Do ABDC là hình chữ nhật (cmt)

⇒ CD = AB (1)

Do B là trung điểm của AE (gt)

⇒ BE = AB = AE : 2 (2)

Từ (1) và (2) ⇒ CD = BE

Do ABDC là hình chữ nhật (cmt)

⇒ CD // AB

⇒ CD // BE

Tứ giác BEDC có:

CD // BE (cmt)

CD = BE (cmt)

⇒ BEDC là hình bình hành

c) Do ABDC là hình chữ nhật (cmt)

⇒ AC // BD

Do đó AC, BD, EK đồng quy là vô lý

Em xem lại đề nhé!

 

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

nên ABDC là hình bình hành

mà góc BAC=90 độ

nên ABDC là hình chữ nhật

b,d: Xét tứ giác AEHF có góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

Suy ra: góc AFE=góc AHE=góc ABC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC

=>góc MAC=góc ACB

=>góc MAC+góc EFA=90 độ

=>AM vuông góc với EF

c: Xét ΔADI có

H,M lần lượt là trung điểm của AI và AD

nên HM là đường trung bình

=>HM//DI

=>DI//BC

Xét ΔCIA có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCIA cân tại C

=>CI=CA=DB

=>BIDC là hình thang cân

29 tháng 11 2023

a) Để chứng minh ABDC là hình chữ nhật, ta cần chứng minh rằng các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AM là trung tuyến của tam giác ABC, nên AM = MC.

- AM = MD (theo giả thiết), nên MD = MC.

- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.

 

Vậy ta có AM = MC, MD = MC và góc AMH = 90 độ.

 

Từ đó, ta có thể kết luận rằng ABDC là hình chữ nhật với các cạnh đối diện bằng nhau và các góc trong bằng 90 độ.

 

b) Để chứng minh AEHF là hình vuông, ta cần chứng minh rằng các cạnh của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.

- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.

- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.

 

Vậy ta có góc AEH = góc AFH = góc AMH = 90 độ.

 

Từ đó, ta có thể kết luận rằng AEHF là hình vuông với các cạnh bằng nhau và các góc trong bằng 90 độ.

 

c) Để chứng minh EF vuông góc với AM, ta cần chứng minh rằng góc giữa EF và AM bằng 90 độ.

 

Ta có:

- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.

- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.

 

Vậy ta có góc AEH = góc AFH = 90 độ.

 

Do đó, EF song song với AB (do AE và AF là các đường vuông góc với AB và AC), và vì AM là trung tuyến của tam giác ABC, nên EF vuông góc với AM.

 

Từ đó, ta có thể kết luận rằng EF vuông góc với AM.