Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có
MA=MD
\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)
Do đó: ΔMHA=ΔMKD
=>MH=MK
=>M là trung điểm của HK
Xét tứ giác AHDK có
M là trung điểm chung của AD và HK
=>AHDK là hình bình hành
a, có MD=MA
BM=CM( M là trung điểm)
mà \(MA=\frac{BC}{2}\)(đường trung tuyến ứng với cạnh huyền của tam giác ABC
=> MA=MB=MD=MC hay MA+MD=MC+MD=> AD=BC
=> ABCD là hcn ( tính chất 2 đường chéo bằng nhau
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
Do đó: ABDC là hình chữ nhật
b: XétΔAID có AH/AI=AM/AD
nên HM//DI
=>DI vuông góc với IA
=>HMDI là hình thang vuông
c:A đối xứng I qua BC
nên CA=CI=BD
Xét tứ giác DIBC có
DI//BC
DB=IC
Do đó: DIBC là hình thang cân
1: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
nên ABNC là hình bình hành
Hình bình hành ABNC có \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
2:
a: Xét ΔABC có
M là trung điểm của BC
MH//AB
Do đó: H là trung điểm của AC
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)
Xét tứ giác AMCE có
H là trung điểm chung của AC và ME
nên AMCE là hình bình hành
Hình bình hành AMCE có MA=MC
nên AMCE là hình thoi
=>\(C_{AMCE}=4\cdot AM=4\cdot2,5=10\left(cm\right)\)
3: Xét ΔNAB có
M,K lần lượt là trung điểm của NA,NB
=>MK là đường trung bình của ΔNAB
=>\(MK=\dfrac{AB}{2}\)
AMCE là hình thoi
=>AE//CM và AE=CM
AE//CM
\(M\in BC\)
Do đó: AE//BM
AE=CM
CM=BM
Do đó: AE=BM
Xét tứ giác ABME có
AE//MB
AE=MB
Do đó: ABME là hình bình hành
=>ME=AB
mà MK=1/2AB
nên \(\dfrac{ME}{MK}=1:\dfrac{1}{2}=2\)
=>ME=2MK
a) Để chứng minh ABDC là hình chữ nhật, ta cần chứng minh rằng các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.
Ta có:
- AM là trung tuyến của tam giác ABC, nên AM = MC.
- AM = MD (theo giả thiết), nên MD = MC.
- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.
Vậy ta có AM = MC, MD = MC và góc AMH = 90 độ.
Từ đó, ta có thể kết luận rằng ABDC là hình chữ nhật với các cạnh đối diện bằng nhau và các góc trong bằng 90 độ.
b) Để chứng minh AEHF là hình vuông, ta cần chứng minh rằng các cạnh của nó bằng nhau và các góc trong của nó bằng 90 độ.
Ta có:
- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.
- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.
- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.
Vậy ta có góc AEH = góc AFH = góc AMH = 90 độ.
Từ đó, ta có thể kết luận rằng AEHF là hình vuông với các cạnh bằng nhau và các góc trong bằng 90 độ.
c) Để chứng minh EF vuông góc với AM, ta cần chứng minh rằng góc giữa EF và AM bằng 90 độ.
Ta có:
- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.
- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.
Vậy ta có góc AEH = góc AFH = 90 độ.
Do đó, EF song song với AB (do AE và AF là các đường vuông góc với AB và AC), và vì AM là trung tuyến của tam giác ABC, nên EF vuông góc với AM.
Từ đó, ta có thể kết luận rằng EF vuông góc với AM.
1, Xét tứ giác ABDC có :
M là trung điểm AD
Vì : DM=MA
Và M là trung điểm BC
Vì : BM=MC
=> AD và BC cắt nhau tại trung điểm mỗi đường
Hay ABCD là HBH
Mà HBH có 1 góc vuông là hình chữ nhật
Vậy đpcm
2a, Xét tam giác BHA có
BE=EH
Và AN=NH
=> EN là đtb của tam giác BHA
=> EN=1/2BA
Và EN//AB
Mà : BA//DC (Vì ABCD là HCN)
Nên : EN//DF (1)
Ta lại có : DF=1/2DC ( DF=FC)
Mà : AB=DC ( Vì ABCD là HCN)
Nên : DF=1/2AB
Mà : EN=1/2AB
=> DF=EN (2)
Từ (1)(2) suy ra : EDNF là hình bình hành
2b, mình không biết làm
Nhớ k mình nha !
1. Ta có: M là trung điểm của BC, M là trung điểm của AD => ABDC là hình bình hành
Xét tam giác ABC vuông tại A có AM là trung tuyến => AM=1/2 BC mà AM=MD => MD = 1/2 BC => tam giác BDC vuông tại D
Xét hình bình hành ABDC có góc D= 90* => ABDC là hình chữ nhật