Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Tứ giác AHBD có
M là trung điểm AB (GT)
M là trung điểm HD (do D đx H qua M)
AB cắt HD tại M
=> AHBD là hbh
Mà \(\widehat{AHB}=90^o\) (do ...)
=> AHBD là hcn
b/ Có AHBD là hcn
=> AD // HB ; AD = HB (t/c)
Mà HB = HE ; H,E,B thẳng hàng
=> AD // HE ; AD = HE
=> AEHD là hbh
c/ Tứ giác AENB có
HE = HB ; H,E,B thẳng hàng
H là trung điểm AN (do N đx A qua H) EB cắt AN tại H
AH ⊥ BC tại H (E thuộc BC ; N thuộc AH)
=> AENB là hình thoi
d/ Xét t/g BNA có
H là trung điểm AH
M là trung điểm AB
BH cắt MN tại K
=> K là trọng tâm t/g BNA
=> BK = 2/3.BH
Mà BH = HE
=> BK = 2/3HE
=>2HE=3BK Lại có H,E,B thẳng hàng ; HE = HB
=> H là trung điểm BE
=> 2HE = BE
=>3BK=BE
\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành
Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn
\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)
Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)
Do đó: ADHE là hình bình hành
\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE
Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)
Do đó \(MN//BH\) hay \(MN//BC\)
Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)
Do đó \(NK//HC\) hay \(NK//BC\)
Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng
a: Xét tứ giác AHBD có
M là trung điểm của AB
M là trung điểm của HD
Do đó: AHBD là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBD là hình chữ nhật
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
a) Xét tứ giác ABEC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AE(A và E đối xứng nhau qua M)
Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành ABEC có \(\widehat{CAB}=90^0\)(ΔABC vuông tại A)
nên ABEC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Vì D đối xứng với M qua AB(gt)
nên AB là đường trung trực của DM
⇔AB vuông góc với DM tại trung điểm của DM
mà AB cắt DM tại H(gt)
nên H là trung điểm của DM và MH⊥AB tại H
Ta có: MH⊥AB(cmt)
AC⊥AB(ΔABC vuông tại A)
Do đó: MH//AC(Định lí 1 từ vuông góc tới song song)
hay MD//AC
Ta có: H là trung điểm của MD(cmt)
nên \(MH=\dfrac{1}{2}\cdot MD\)(1)
Xét ΔABC có
M là trung điểm của BC(gt)
MH//AC(cmt)
Do đó: H là trung điểm của AB(Định lí 1 đường trung bình của tam giác)
Xét ΔABC có
M là trung điểm của BC(gt)
H là trung điểm của AB(cmt)
Do đó: MH là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒\(MH=\dfrac{1}{2}\cdot AC\)(Định lí 2 đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra AC=MD
Xét tứ giác ACMD có
AC//MD(cmt)
AC=MD(cmt)
Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
a) Xét tứ giác AHBD có
M là trung điểm của đường chéo AB(gt)
M là trung điểm của đường chéo HD(H và D đối xứng nhau qua M)
Do đó: AHBD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AHBD có \(\widehat{AHB}=90^0\)(AH⊥BC)
nên AHBD là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: AHBD là hình chữ nhật(cmt)
nên AD//HB và AD=HB(hai cạnh đối trong hình chữ nhật AHBD)
mà E∈HB và HE=HB(gt)
nên AD//EH và AD=EH
Xét tứ giác AEHD có AD//EH(cmt) và AD=EH(cmt)
nên AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: EH=BH(gt)
mà E,H,B thẳng hàng
nên H là trung điểm của EB
Xét tứ giác AENB có
H là trung điểm của đường chéo EB(cmt)
H là trung điểm của đường chéo AN(A và N đối xứng nhau qua H)
Do đó: AENB là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AENB có AN⊥EB(AH⊥BC, E∈BC, N∈AH)
nên AENB là hình thoi(Dấu hiệu nhận biết hình thoi)