Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AD/DC=BA/BC=6/10=3/5
b: Xét ΔHBA vuông tạiH và ΔABC vuôg tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
c: góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
màgóc DBC=góc ABD
nên góc AID=góc ADI
=>ΔAID cân tại A
a) Áp dụng định lý PYTAGO vào tam giác ABC có
BC^2=AB^2+AC^2
= 9^2+12^2=225
BC= 15
Sabc= 1/2.AB.AC = 54 mà Sabc = 1/2.AH.BC
=> 1/2.AH = Sabc: BC = 3.6=> AH =7,2
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạg với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc ADE=90 độ-góc ABD
góc AED=góc BEH=90 độ-góc DBC
mà góc ABD=góc DBC
nên góc ADE=góc AED
=>AD=AE
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: BC=căn 3^2+4^2=5cm
AH=3*4/5=2,4cm
c: góc AED=góc BEH=90 độ-góc DBC
góc ADE=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AED=góc ADE
=>AD=AE
a) Do BD là đường phân giác của ∆ABC
⇒ ∠ABD = ∠CBD
⇒ ∠ABD = ∠HBI
Xét hai tam giác vuông: ∆ABD và ∆HBI có:
∠ABD = ∠HBI (cmt)
⇒ ∆ABD ∽ ∆HBI (g-g)
b) Do ∆ABD vuông tại A
⇒ ∠ADB + ∠ABD = 90⁰
⇒ ∠ADI + ∠ABD = 90⁰
Mà ∠ABD = ∠HBI (cmt)
⇒ ∠ADI + ∠HBI = 90⁰ (1)
∆HBI vuông tại H
⇒ ∠HBI + ∠HIB = 90⁰
Mà ∠HIB = ∠AID (đối đỉnh)
⇒ ∠HBI + ∠AID = 90⁰ (2)
Từ (1) và (2) ⇒ ∠ADI = ∠AID
∆ADI có:
∠ADI = ∠AID (cmt)
⇒ ∆ADI cân tại A