Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(BC=BD+CD=35\left(cm\right)\)
Vì AD là p/g nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}=\dfrac{15}{20}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}CD\)
Áp dụng PTG: \(BC^2=1225=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)
\(\Rightarrow AC^2=784\Rightarrow AC=28\left(cm\right)\\ \Rightarrow AB=\dfrac{3}{4}\cdot28=21\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=12,6\left(cm\right)\\CH=\dfrac{AC^2}{BC}=22,4\left(cm\right)\end{matrix}\right.\)
a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ
cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2
TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2 ÁP DỤNG PITA GO TÌM RA CẠNH bc
b,
a, ^B = ^A - ^C = 900 - 300 = 600
\(\cos B=\frac{AB}{AC}\Rightarrow\frac{1}{2}=\frac{9}{AC}\Rightarrow AC=18\)cm
Áp dụng định lí Pytago tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=81+324=405\Rightarrow BC=9\sqrt{5}\)cm
b, \(\cos B=\frac{BH}{AB}\Rightarrow\frac{1}{2}=\frac{BH}{9}\Rightarrow BH=\frac{9}{2}\)cm
\(\sin B=\frac{AH}{AB}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AH}{9}\Rightarrow AH=\frac{9\sqrt{3}}{2}\)cm
c, Vì AD là đường phân giác nên : \(\frac{AB}{AC}=\frac{BD}{DC}\Rightarrow\frac{DC}{AC}=\frac{BD}{AB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{DC}{AC}=\frac{BD}{AB}=\frac{DC+BD}{AC+AB}=\frac{9\sqrt{5}}{27}=\frac{\sqrt{5}}{3}\)
\(\Rightarrow BD=\frac{\sqrt{5}}{3}AB=\frac{\sqrt{5}}{3}.9=3\sqrt{5}\)cm
\(\Rightarrow HD=BD-BH=3\sqrt{5}-\frac{9}{2}\)cm
Áp dụng định lí tam giác AHD vuông tại H ta có :
\(AD^2=AH^2+HD^2=\left(\frac{9\sqrt{3}}{2}\right)^2+\left(3\sqrt{5}-\frac{9}{2}\right)^2\)
tự giải nhé ><
a. Giải tam giác ABC
B=60^0
AC=AB/tan30=9.√ 3
BC=AB/sin30=9.2 =18
S=AC.AB/2=81√ 3/2
b. Kẻ AH là đường cao, tính AH, BH
AH=2S/BC=81√ 3/18=9√ 3/2
BH=√ (AB^2-AH^2)=9√ (1-3/4)=9/2