Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đọc câu cuối thì chắc là chứng minh phản chứng đêý ạ ( Ngu lí thuyết, chắc thế.)
Đại khái cái cách này là bạn gọi 1 trong 3,4 điểm cần cm thẳng hàng ý trùng 1 điểm bâts kì thuộc (hoặc chứng minh được) thuộc đoạn thẳng có 2 mút là 2 điểm cần chứng minh ấy. Rồi từ dữ kiện đề bài => 2 điểm trùng nhau => thẳng hàng. Cơ bản mình hiểu là vậyyy ..
sao FC lại song song me do cùng vuông góc hc được .CF vuông góc với tia phân giác góc MEC mà chỉ
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
b: BC=căn 9^2+12^2=15cm
AH=9*12/15=7,2cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có
\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))
Do đó: ΔABD\(\sim\)ΔEBC(g-g)
tự vẽ hình nhé
a, ta có <HBA+<BAH =90
<BAH + <HAC=90
\(\Rightarrow\) <HBA=<HAC
xét \(\Delta AHB\) và \(\Delta CHA\)
<HBA=<HAC
<BHA=<CHA=90
\(\Rightarrow\Delta AHB\) ~\(\Delta CHA\)
b, Xét \(\Delta ABH\) vg tại H, áp dụng đl Py ta go ta đc
\(AH^2+BH^2=AB^2\\ \Rightarrow BH=9\)
Ta có \(\Delta ABH\) ~ \(\Delta CAH\)
\(\dfrac{\Rightarrow BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH\cdot CH\)
\(\Rightarrow CH=16\)
Xét \(\Delta AHC\) cg tại H, áp dụng ĐL py ta go ta đc
\(AH^2+CH^2=AC^2\Rightarrow AC=20\)
c, xét \(\Delta ABC\) vg tại A áp dụng đl Py ta go ta đc
\(AB^2+AC^2=BC^2\Rightarrow BC=25\)
Ta có AM là tia pg của <BAC
\(\dfrac{MB}{AB}=\dfrac{MC}{AC}\Rightarrow\dfrac{MB+MC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{7}\\ \Rightarrow MB=10,7\)
a) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{CAH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)