K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ta có AB=AC\(\Rightarrow\Delta ABC\) là tam giác vuông cân tại A

\(\Rightarrow\widehat{ACB}=\widehat{ABC}\) hay \(\widehat{ACK}=\widehat{ABK}\)

Xét \(\Delta AKB\) và \(\Delta AKC\) có

\(AB=AC\) ( giả thiết )

\(\widehat{ABK}=\widehat{ACK}\) (chứng minh trên)

\(KB=KC\) ( Vì K là trung điểm của BC )

 \(\Rightarrow\Delta AKB=\Delta AKC\left(c-g-c\right)\)

vậy  \(\Delta AKB=\Delta AKC\)

b)  ta có \(\Delta AKB=\Delta AKC\) (chứng minh câu a)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}\) (2 góc tương ứng)

mà \(\widehat{AKB}+\widehat{AKC}=180độ\) (2 góc kề bù)

\(\Rightarrow\widehat{AKB}=\widehat{AKC}=\dfrac{180độ}{2}=90độ\)

\(\Rightarrow AK\perp BC\)

vậy \(AK\perp BC\)

c) ta có \(AK\perp BC\) (chứng minh trên)

mà \(EC\perp BC\) ( giả thiết )

\(\Rightarrow EC//AK\)

vậy \(EC//AK\)

d) ta có \(\Delta ABC\)  là tam giác vuông cân

\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45độ\)

ta có \(EC\perp BC\Rightarrow\widehat{BCE}=90độ\)

ta có \(\widehat{ACB}+\widehat{ACE}=\widehat{BCE}\)

          \(45độ+\widehat{ACE}=90độ\)

                       \(\widehat{ACE}=90độ-45độ=45độ\)

\(\Rightarrow\widehat{ACE}=\widehat{ACB}=45độ\)

ta có  \(\widehat{CAB}+\widehat{CAE}=180độ\) (2 góc kề bù)

\(\Rightarrow90độ+\widehat{CAE}=180độ\)

\(\Rightarrow\widehat{CEA}=180độ-90độ=90độ\)

\(\Rightarrow\widehat{CAE}=\widehat{CAB}=90độ\)

Xét \(\Delta ACE\) và \(\Delta CAB\) có 

\(\widehat{ACE}=\widehat{ACB}\)  (chứng minh trên)

CA là cạnh chung

\(\widehat{CAE}=\widehat{CAB}\) (chứng minh trên

\(\Rightarrow\Delta ACE=\Delta ACB\left(g-c-g\right)\)

\(\Rightarrow CE=CB\)

vậy \(CE=CB\)

 

 

 

17 tháng 12 2017

a/ Ta có:  AB = AC (gt); BK = KC (vì K là trung điểm của BC); AK là cạnh chung

=>> tg AKB = tg AKC (c.c.c)

Ta có: AB = AC (gt) => tg ABC vuông cân tại A

mà K là trung điểm của BC

=>> AK là đường trung trực của tg ABC

=> AK\(\perp\) BC

b/ Ta có:  EC \(\perp BC\) (gt) và AK\(\perp BC\) (cmt)

=>> EC // AK

c/ AK là đường cao đồng thời là đường phân giác của tam giác ABC vuông cân tại A

=> \(\widehat{BAK}\) = \(\widehat{KAC}\) = 45 độ 

=> tg AKB vuông cân tại B => \(\widehat{KBA}=\widehat{BAK}\) (1)

Ta có: EC // AK (cmt) => \(\widehat{BAK}=\widehat{BEC}\) (2)

Từ (1) vả (2) => \(\widehat{KBA}=\widehat{BEC}\)

=> tg BCE cân tại C =>> CE = CB

16 tháng 12 2018

giúp mình vs!!

16 tháng 12 2018

a,Xét tam giác AKC và AKB có:
CA=BA (gt)
CK=BK(gt)
AK :cạnh chung
=>Tam giác AKC=AKB(c.c.c)
=>góc AKC =góc AKB ( vì hai góc tương ứng)
lại có :góc AKC+góc AKB =180 °(vì hai góc kề bù )
=>AKB=AKC =90 °=>AK ⊥ BC (đpcm)
b,Ta có EC ⊥ CB
AK ⊥ CB
=>CE//AK(quan hệ từ vuông góc đến song song)

c, \(\widehat{CEA}+\widehat{CBA}\) =90

\(\widehat{ACB}+\widehat{ABC}\)  = 90

=> \(\widehat{CEA}=\widehat{ACB}\)

Xét tam giác vuông CAE và CAB có:

AC chung

\(\widehat{CEA}=\widehat{ACB}\)

=> Tam giác CAE = CAB

=> CE = CB ( hai cạnh tương ứng)

23 tháng 12 2016

a,xét tam giác ABK và tam giác ACK có:                                                                                                                                               AB=AC(GT)                                                                                                                                                                                      AK chung                                                                                                                                                                                        BK=CK                                                                                                                                                                                            CẢ 3 ĐIỀU TRÊN SUY RA TAM GIÁC ABK=TAM GIÁC ACK (C.C.C)                                                                                                   SUY RA GÓC AKB=GÓC AKC (CẶP GÓC TƯƠNG ỨNG).MẶT KHÁC GÓC AKB+GÓC AKC=18O ĐỘ .SUY RA AKB=AKB=180:2=9O ĐỘ SUY RA AK VUÔNG GÓC VS BC

23 tháng 12 2016

cho tam giác ABC cân tại A.trên AB lấy M trên AC lấy N sao cho BM=CN.kẻ MD và NE vuông góc vs BC.CM                                     a,BD=CE                                                                                                                                                                                      b,ID=IE

15 tháng 12 2021

a) Xét tam giác AKB và tam giác AKC , có                                                                                                                                                      AB=AC (GT)                                                                                                                                                                                                 BK là cạnh chung                                                                                                                                                                                             KB=KC ( K là trung điểm của BC)                                                                                                                                                                  Do vậy tam giác AKB = tam giác AKC (c.c.c)                                                                                                                                                  b) Có tam giác AKB = AKC (cmt)   

 => ˆAKB=ˆAKC⇒AKB^=AKC^. Mà ˆAKB+ˆAKC=ˆBKC=1800AKB^+AKC^=BKC^=1800. Do đó:

ˆAKB=ˆAKC=900⇒AK⊥BCAKB^=AKC^=90⇒AK⊥BC 

Ta thấy: EC⊥BC ; AK⊥BC (cmt)

⇒EC∥AK⇒EC∥AK ()

c) Vì tam giác ABC là tam giác vuông cân tại A nên ˆB=45

Tam giác CBE vuông tại C có ˆB=45 ⇒ˆE=1800−(ˆC+ˆB)=180−(90+45)=45

⇒ˆE = ˆB⇒E^=B^ nên tam giác CBE cân tại C. Do đó CE=CB 

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

a) Xét tam giác AKB và AKC có:

AB=AC (giả thiết)

KB=KC (do K là trung điểm của BC)

AK chung

Do đó: \(\triangle AKB=\triangle AKC(c.c.c)\) (đpcm)

\(\Rightarrow \widehat{AKB}=\widehat{AKC}\). Mà \(\widehat{AKB}+\widehat{AKC}=\widehat{BKC}=180^0\). Do đó:

\(\widehat{AKB}=\widehat{AKC}=90^0\Rightarrow AK\perp BC\) (đpcm)

b) 

Ta thấy: \(EC\perp BC; AK\perp BC\) (đã cm ở phần a)

\(\Rightarrow EC\parallel AK\) (đpcm)

c) Vì tam giác ABC là tam giác vuông cân tại A nên \(\widehat{B}=45^0\)

Tam giác CBE vuông tại C có \(\widehat{B}=45^0\) \(\Rightarrow \widehat{E}=180^0-(\widehat{C}+\widehat{B})=180^0-(90^0+45^0)=45^0\)

\(\Rightarrow \widehat{E}=\widehat{B}\) nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Hình vẽ: undefined

28 tháng 11 2023

Lời giải:

a) Xét tam giác AKB và AKC có:

AB=AC (giả thiết)

KB=KC (do K là trung điểm của BC)

AK chung

Do đó: AKB=AKC(c.c.c)△���=△���(�.�.�) (đpcm)

ˆAKB=ˆAKC⇒���^=���^. Mà ˆAKB+ˆAKC=ˆBKC=1800���^+���^=���^=1800. Do đó:

ˆAKB=ˆAKC=900AKBC���^=���^=900⇒��⊥�� (đpcm)

b) 

Ta thấy: ECBC;AKBC��⊥��;��⊥�� (đã cm ở phần a)

ECAK⇒��∥�� (đpcm)

c) Vì tam giác ABC là tam giác vuông cân tại A nên ˆB=450�^=450

Tam giác CBE vuông tại C có ˆB=450�^=450 ˆE=1800(ˆC+ˆB)=1800(900+450)=450⇒�^=1800−(�^+�^)=1800−(900+450)=450

ˆE=ˆB⇒�^=�^ nên tam giác CBE cân tại C. Do đó CE=CB (đpcm)

d mình ko biết

8 tháng 12 2018

A B C K \

a) \(\Delta AKB\)và \(\Delta AKC\)có:

       AB = AC (theo GT)

       BK = CK (vì K là trung điểm của BC)

       AK: cạnh chung

   Do đó: \(\Delta AKB=\Delta AKC\)(c.c.c)

   Suy ra: \(\widehat{AKB}=\widehat{AKC}\)(cặp góc tương ứng)

   Mà \(\widehat{AKB}+\widehat{AKC}=180^o\)(2 góc kề bù)

  Nên \(\widehat{AKB}=\frac{180^o}{2}=90^o\)

Vậy \(AK\perp BC\)