K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

*Xét tam giác HBE đồng dạng với tam giác ABD (gg) có ABD=HBD và BHE=BAD=90

=>BH/BE=AB/BD=>  BH.BD=BE.BA

*có AED=BEH(đối đỉnh)  mà BEH + HBE =90 Hay AED+ABD =90( ABD=HBE) 1

Mặt khác ABD+BDA=90 2 

Từ 1 và 2 =>AED=ADE

suy ra tam giác AED cân

nhớ k 

10 tháng 9 2021

các bạn giúp mik với!!!!

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: Xét ΔBAC có BD là phân giác

nen AD/BA=DC/BC

=>AD/3=DC/5=12/8=1,5

=>AD=4,5cm; DC=7,5cm

d: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AID=góc ADI

=>ΔAID cân tại A

a: Xét ΔABH có BI là phân giác

nên \(\dfrac{AI}{AB}=\dfrac{IH}{BH}\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

Đề bài này chưa đủ dữ kiện để tính cụ thể AI/AB; AD/AB nha bạn

b: ΔBAD vuông tại A

=>\(\widehat{ABD}+\widehat{ADB}=90^0\)

=>\(\widehat{ADI}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\left(1\right)\)

ΔBIH vuông tại H

=>\(\widehat{HBI}+\widehat{BIH}=90^0\)

=>\(\widehat{BIH}+\dfrac{1}{2}\cdot\widehat{ABC}=90^0\)(2)

Từ (1) và (2) suy ra \(\widehat{ADI}=\widehat{BIH}\)

mà \(\widehat{AID}=\widehat{BIH}\)(hai góc đối đỉnh)

nên \(\widehat{ADI}=\widehat{AID}\)

=>ΔAID cân tại A

=>AD=AI(3)

Xét ΔABH có BI là phân giác

nên \(\dfrac{IH}{BH}=\dfrac{AI}{AB}\left(4\right)\)

Xét ΔABC có BD là phân giác

nên \(\dfrac{DC}{BC}=\dfrac{DA}{AB}\left(5\right)\)

Từ (3),(4),(5) suy ra \(\dfrac{IH}{BH}=\dfrac{DC}{BC}\)

10 tháng 12 2023

1+1=2

16 tháng 3 2020

Tham khảo nha:

https://h.vn/hoi-dap/question/790326.html