Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy tứ giác AMNC nội tiếp đường tròn đường kính MN.
b) Ta có tứ giác AMNC nội tiếp nên \(\angle BCM=\angle BAN\). Suy ra \(\Delta BCM\sim\Delta BAN\left(g.g\right)\).
Từ đó \(\dfrac{BM}{BN}=\dfrac{CM}{AN}\).
c) Gọi P' là trung điểm của MC.
Khi đó P' là tâm của đường tròn ngoại tiếp tứ giác AMNC.
Ta có \(\widehat{AP'N}=2\widehat{ACN}=180^o-2\widehat{ABC}=180^o-\widehat{MON}\). Suy ra tứ giác AONP' nội tiếp.
Từ đó \(P'\equiv P\). Ta có \(OP=OP'=\dfrac{BC}{2}\) (đường trung bình trong tam giác BMC) không đổi khi M di động trên cạnh AB.
a:
Xét đường tròn đường kính HB có
ΔHMB nội tiếp đường tròn
HB là đường kính
Do đó: ΔHMB vuông tại M
Xét đường tròn đường kính HC có
ΔHNC nội tiếp đường tròn
HC là đường kính
Do đó: ΔHNC vuông tại N
Xét tứ giác AMHN có
\(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^0\)
nên AMHN là hình chữ nhật
b: \(BC=\sqrt{6^2+8^2}=10\)(cm)
=>AH=6*8/10=4,8(cm)
=>MN=4,8(cm)
c: góc EMN=góc EMH+góc NMH
=góc EHM+góc NAH
=góc HAC+góc HCA=90 độ
=>MN là tiếp tuyến của (E)
a: Xét (O) có
ΔBCA nội tiếp
AB là đường kính
=>ΔBAC vuông tại C
\(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
Xét ΔABC vuông tại C có sin CAB=CB/AB=1/2
nên góc CAB=30 độ
=>góc CBA=60 độ
b: ΔOAC cân tại O
mà OD là đường cao
nên OD là trung trực của AC
c: Xét ΔDAO và ΔDCO có
DA=DC
AO=CO
DO chung
=>ΔDAO=ΔDCO
=>góc DCO=90 độ
=>DC là tiếp tuyến của (O)
d: goc DAI+góc OAI=90 độ
góc CAI+góc OIA=90 độ
mà góc OAI=góc OIA
nên góc DAI=góc CAI
=>AI là phân giác của góc CAD
=>I là tâm đường tròn nội tiếp ΔADC