K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CC
10 tháng 12 2020
b) Gọi OD ⊥ AC tại I ( I thuộc OD)
Có: OD⊥ AC (gt) và CB⊥ AC ( △ABC vuông tại C)
Do đó OD // CB
Xét △ABC, có:
OD// CB (cmt)
O là trung điểm AB ( AB là đường kính)
Do đó OI là đường trung bình ABC
=>I là trung điểm AC
Có: OD ⊥ AC(gt) , I trung điểm AC (cmt) (I thuộc OD)
Nên OD là đường trung trực của AC
c)
Xét t/giác AOC, có:
AO=OC (=R)
Do đó t/giác AOC cân tại O
Mà OI ⊥ AC
Nên OI cũng là đường phân giác góc AOC
=> AOI = COI
Xét t/giác ADO và t/giác DOC, có:
OD chung
AOI = COI (cmt)
OA=OC (=R)
Do đó t/giác ADO = t/giác CDO (c-g-c)
=> DAO = DCO
Mà DAO= 90
Nên DCO = 90
Có C thuộc (O) ( dây cung BC)
Nên CD là tiếp tuyến
a: Xét (O) có
ΔBCA nội tiếp
AB là đường kính
=>ΔBAC vuông tại C
\(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
Xét ΔABC vuông tại C có sin CAB=CB/AB=1/2
nên góc CAB=30 độ
=>góc CBA=60 độ
b: ΔOAC cân tại O
mà OD là đường cao
nên OD là trung trực của AC
c: Xét ΔDAO và ΔDCO có
DA=DC
AO=CO
DO chung
=>ΔDAO=ΔDCO
=>góc DCO=90 độ
=>DC là tiếp tuyến của (O)
d: goc DAI+góc OAI=90 độ
góc CAI+góc OIA=90 độ
mà góc OAI=góc OIA
nên góc DAI=góc CAI
=>AI là phân giác của góc CAD
=>I là tâm đường tròn nội tiếp ΔADC