K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

a/ \(AC=\sqrt{BC^2-AB^2}=\sqrt{25^2-20^2}=15\)

A>C>B 

b/ Ta có : góc BAE + góc EAC = 90 độ ( góc A là góc vuông)

xét  tam giác vuông ABK và tam giác vuông EBK:

AK = KE,  BK là cạnh chung 

=> 2 tam giác bằng nhau ( 2 cạnh góc vuông)

=> BA = BE ( 2 cạnh tương ứng )

=> tam giac BAE cân tạ B.

c/ xét tam giác ABC và tam giác EBC có:

AB = BE (cm câu b)

góc ABK = góc KBE ( đường phân giác trong tam giác cân BAE)

BC là cạnh chung

=> 2 tam giác bằng nhau.

=> tam giác BEC vuông tại E.

d/góc BKE = 90 độ (1)

tam giác MKB cân tại M ( tính chất đường trung tuyến trong tam giấc vuông)

=> góc MKB = góc ABC = 90 - KAB (2)

góc QKE = 90 - góc QEK mà góc QEK = góc CAK  ( tam giác AKC = tam giác EKC) = 90 - góc KAB => góc QKE = góc KAB

mặt khác tam giác MAK cân tại M( tính chất đương trung tuyến trong tam giác vuông) => góc BAK = góc MKA (3)

góc MKB + góc MKA = 90 độ (4)

từ (1), (2), (3) và (4) suy ra góc MKA + góc BKE + góc EKQ = 180 độ

vậy M, K, Q thẳng hàng

20 tháng 4 2016

a,Áp dụng định lý Pi-ta-go , ta có :

AB^2+AC^2=BC^2

12^2+AC^2=20^2

144+AC^2=400

AC^2=400-144

AC^2=256

\(\Rightarrow AC=\sqrt{256}=16\)

Ta có : BC>AC>AB

=> góc Â>B>C

b, Xét tg BAD và tg BHD vuông tại H

Có : AH=HD ( 2 tia đối )

B là góc chung

=> tg BAD = tg BHD 

=> BA=BD ( hai cạnh tương ứng)

Mà : trong tg BAD có BA=BD

=> tg BAD cân

c và d : k pt lm

20 tháng 5 2021

\(a)\)

\(\text{Ta có}:\)

\(\Delta ABC\)\(\text{vuông tại}\)\(A\)

\(\rightarrow BC^2=AB^2+AC^2\)

\(\rightarrow AC^2=BC^2-AB^2\)

\(\rightarrow AC^2=15^2-9^2\)

\(\rightarrow AC^2=144\)

\(\rightarrow AC=12\)

\(\rightarrow AB< AC< BC\)

\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)

\(\text{Ta có:}\)

\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)

\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)

\(b)\)

\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)

\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)

\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)

\(\rightarrow CM=\frac{2}{3}CA\)

\(\rightarrow CM=8\)

\(c)\)

\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)

                         \(\rightarrow\widehat{CEA}=\widehat{CBA}\)

\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)

         \(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)

         \(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)

\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)

20 tháng 5 2021

C B A H K M E

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC

25 tháng 4 2018
c) ∆ BEC có BH và AC là trung tuyến cắt nhau tại M => M là trọng tâm. Kho đó CM = 2/3 AC = 2/3.8=16/3cm
25 tháng 4 2018
a) Xét ∆vuông ABC theo Đ.lý pytago ta có: AB^2+AC^2=BC^2 => 6^2+AC^2= 10^2 => 36+ AC^2= 100 => AC^2 =100-36 => AC^2=64 => AC =8cm. Có BC>AC>AB => góc A> góc B> góc C

a) Xét \(\Delta\)AMB = \(\Delta\)AMC có :

AB=AC (gt)

AM_chung

BM = CM (gt)

=>\(\Delta\)AMB = \(\Delta\)AMC (c.c.c)

25 tháng 3 2020

yên tâm , bài khó đã có mình

a) tam giác ABC cân tại A do AB=AC

M là trung điểm của BC

=> AM  zừa là đường trung tuyến zừa là đường cao hay phân giác

=>\(\widehat{BAM}=\widehat{CAM}\)

xét tam giác AMB zà tam giác AMC có

AB=AC(gt)

AM chung

\(\widehat{BAM}=\widehat{CAM}\left(cmt\right)\)

=> tam giác AMB = tam giác AMC (c.g.c)

b) ta có \(\hept{\begin{cases}DK\perp AM(ABCcân)\\BC\perp AM\end{cases}=>DE//BC}\)mà ABC cân => AD=AE

c) ta có \(\hept{\begin{cases}EF=MC\\MC//EK\end{cases}=>MEKC}\)là hbh

=> MF , EC căt nhau tại trung điểm mỗi đường

mà H là trung điểm EC

=> H nằm trên cạnh MF

=> M,H,F thẳng hàng

a) tam giác ABC vuông tại A

=> AB2 + AC2 = BC2 (định lý py-ta-go)

=> 92 + AC2 = 152

=> AC2 = 225 - 81

=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)

t i c k đúng nhé

a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)

                              => góc C < góc B < góc A (định lý)