Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC vuông tại A có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(8^2+6^2=BC^2\left(64+36=100\right)\)
\(\Rightarrow BC=\sqrt{100}=10cm\)
b) Câu này viết lại đề đi
A B C D E F O
a. Áp dụng định lý Pitago cho tam giác vuông ABC ta có: \(AC^2=BC^2-AC^2=10^2-6^2=64\)
Vậy \(AC=8cm\)
b. Do D nằm trên tia đối của tia AB nên \(\widehat{CAD}=90^O\)
Xét tam giác ABC và tam giác ADC có:
\(\widehat{CAB} = \widehat{CAD}=90^O\)
AC chung
AB=AD(giả thiết)
\(\Rightarrow\Delta ABC=\Delta ADC\)(Hai cạnh góc vuông)
c. Xét tam giác DCB có :
A là trung điểm BD,
AE song song BC
\(\Rightarrow\) AE là đường trung bình tam giác DBC., hay E là trung điểm DC. Vậy AE là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên EA=EC=ED. Vậy tma giác AEC cân tại E. ( Còn có thể có cách khác :) )
d. Xét tam giác DBC có CA là trung tuyến, lại có CA = 3OA nên O là trọng tâm tam giác DBC. Do F là trung điểm BC nên DF là đường trung tuyến. Vậy O nằm trên DF hay O, D, F thẳng hàng.
Chúc em học tốt ^^
a)
Theo định lí py ta go trong tam giác vuông ABC có :
BC2 = AB2 + AC2
Suy ra : AC2 = BC2 - AB2
AC2 =102 - 62
AC = căn bậc 2 của 36 = 6 (cm )
b)
Xét tam giác ABC và tam giác ADC có :
AC cạnh chung
Góc A1 = góc A2 = 90 độ (gt )
AB = AD ( gt )
suy ra : tam giác ABC = tam giác ADC ( c- g -c )
a) Áp dụng định lí Pytago vào \(\Delta ABC\)ta có:
\(BC^2=AB^2+AC^2\)Hay \(BC=\sqrt{6^2+8^2=10}\)
Ủng hộmi nha
A B C D E
a) Xét \(\Delta ABC\)vuông tại A, AB = 6cm; AC = 8cm
\(\Rightarrow BC^2=AB^2+AC^2\)
\(BC^2=6^2+8^2\)
\(BC^2=36+64\)
\(BC^2=100\)
\(BC=10\)
Suy ra cạnh BC = 10cm
b) Xét \(\Delta BAC\)và \(\Delta BED\)ta có:
\(\widehat{BAC}=\widehat{DEB}=90^o\)
\(\widehat{B}\)chung
\(BD=BC\left(gt\right)\)
\(\Rightarrow\Delta BAC=\Delta BED\)
Vậy...
A B E D C M
a, Xét hai tam giác vuông ABC và tam giác vuông EBD có
góc BAC = góc BED = 90độ
BD = BC [ gt ]
góc ABC = góc EBD [ đối đỉnh ]
Do đó ; tam giác ABC = tam giác EBD [ cạnh huyền - góc nhọn ]
\(\Rightarrow\)BA = BE [ cạnh tương ứng ]
\(\Rightarrow\)tam giác ABE cân tại B
\(\Rightarrow\widehat{BAE}=\widehat{BEA}=\frac{180^0-\widehat{ABE}}{2}\) [ 1 ]
Vì BC = BD [ gt ]
\(\Rightarrow\)tam giác CBD cân tại B
\(\Rightarrow\widehat{BCD}=\widehat{BDC}=\frac{180^0-\widehat{CBD}}{2}\) [ 2 ]
Ta có ; góc ABE = góc CBD [ đối đỉnh ] [ 3 ]
Từ [ 1 ] , [ 2 ] và [ 3 ] suy ra
góc BAE = góc BEA = góc BCD = góc BDC
Ta thấy ; góc BAE = góc BDC [ ở vị trí so le trong ]
Vậy AE // CD
B A C D 1 3 2 4
a, Xét \(\Delta ABC\)vuông tại A có :
\(BC^2=AB^2+ AC^2\)
\(BC^2=8^2+6^2\)
\(BC^2=64+36\)
\(BC^2=100\)
\(BC=10\)(cm)
b, Xét \(\Delta ABE\)và \(\Delta BDE\)có :
\(AB=AD\)(gt)
\(\widehat{BAE}=\widehat{DAE}=90^o\)(gt)
AE là cạnh chung
=> \(\Delta ABE=\Delta BDE\)(c.g.c)
=> BE = DE
=> \(\widehat{E_1}=\widehat{E_2}\)
Ta có :
\(\widehat{E_1}+\widehat{E_3}=180^o\)(2 góc kề bù)
\(\widehat{E_2}+\widehat{E_4}=180^o\)(2 góc kề bù)
mà \(\widehat{E_1}=\widehat{E_2}\)(cmt)
=> \(\widehat{E_3}=\widehat{E_4}\)
Xét \(\Delta BEC\)và \(\Delta DEC\)có :
\(\widehat{E_3}=\widehat{E_4}\) (chứng minh trên)
EC là cạnh chung
BE = DE (chứng minh trên)
=> \(\Delta BEC\) = \(\Delta DEC\) (c.g.c )
A B C D E M
ta thừa nhận tính chất 2 tam giác cân chung đỉnh thì 2 góc đáy bằng nhau
ta có tam giác ADE cân tại A ( AD = AE )
và tam giác ABD cân tại A ( gt)
suy ra góc ADE = góc AED = góc ABC = góc ACB
ta lấy góc ADE = góc ABC
mà 2 góc này ở vị trí đồng vị suy ra DE//BC
b) ta có AD = AE (gt) và AB = AC 9gt)
suy ra AD-DB = AC-AE ( vì D nằm giữa A và B, E nằm giữa A và C )
hay DB = EC
\(\Delta MBD\)và \(\Delta MCE\)có
DB = EC ( cmt )
góc B = góc C ( tam giác cân )
BM = MC (gt)
do đó tam giác MBD = tam giác MCE (c.g.c )
c) tam giác MBD = tam giác MCE (cmt)
suy ra (2 cạnh tương ứng )
Tam giác AMD và tam giác AME có
DM = EM (cmt)
AD = AE (gt)
AM là cạnh chung
do đó tam giác AMD = tam giác AME (c.c.c)
chúc bạn học tốt