K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

=>AD=BC

mà BC=10cm

nên AD=10cm

b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có

MA=MD

\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)

Do đó: ΔMHA=ΔMKD

=>MH=MK

=>M là trung điểm của HK

Xét tứ giác AHDK có

M là trung điểm chung của AD và HK

=>AHDK là hình bình hành

=>AK//DH

c: E đối xứng A qua BC

=>BC là đường trung trực của AE

=>BC\(\perp\)AE tại trung điểm của AE(1)

Ta có: BC\(\perp\)AE

BC\(\perp\)AH

AE,AH có điểm chung là A

Do đó: E,A,H thẳng hàng(2)

Từ (1) và (2) suy ra H là trung điểm của AE

Xét ΔADE có

H,M lần lượt là trung điểm của AE,AD

=>HM là đường trung bình của ΔADE

=>HM//DE

mà \(H\in BC;M\in\)BC

nên DE//BC

Xét ΔCAE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

=>CA=CE

mà CA=BD(ABDC là hình chữ nhật)

nên CE=BD

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

Hình thang BEDC có BD=CE

nên BEDC là hình thang cân

a: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: Xét ΔADE có 

M là trung điểm của AD

H là trung điểm của AE
Do đó: MH là đường trung bình của ΔADE

Suy ra: MH//DE

hay BC//DE

Xét ΔCAE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

Suy ra: CA=CE
mà CA=BD

nên CE=BD

Xét tứ giác BCDE có DE//BC

nên BCDE là hình thang

mà CE=BD

nên BCDE là hình thang cân

11 tháng 1 2022

thank bạn

10 tháng 12 2020

a) Xét tứ giác EDCB có ED//BC(gt)

nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang EDCB có \(\widehat{B}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét tứ giác AKCH có 

D là trung điểm của đường chéo AC(gt)

D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AKCH có \(\widehat{AHC}=90^0\)(AH⊥BC)

nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

⇒H là trung điểm của BC

hay HB=HC

mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)

nên BH=AK

Xét ΔABC có 

H là trung điểm của BC(cmt)

D là trung điểm của AC(gt)

Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒HD//AB và \(HD=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔABC có 

D là trung điểm của AC(gt)

DE//BC(gt)

Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}\)(2)

Từ (1) và (2) suy ra HD//AE và HD=AE

Xét tứ giác AEHD có 

HD//AE(cmt)

HD=AE(cmt)

Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AH cắt ED tại F

nên F là trung điểm chung của AH và ED

Xét tứ giác AKHB có 

AK//HB(AK//HC, B∈HC)

AK=HB(cmt)

Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà F là trung điểm của AH(cmt)

nên F là trung điểm của BK(đpcm)

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

30 tháng 11 2021

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

18 tháng 12 2020

B A C M D E

18 tháng 12 2020

A, Xét tứ giác ABCD có

MB=MC=1/2BC(M là trung điểm BC-gt)

MD=MA=1/2AD( M là trung điểm AD-gt)

mà AD cắt BC tại M

->ABCD là hbh

Ta có ABCD là hình bh ( cmt)

mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)

-> ABCD là hcn(Đpcm)

B, Gọi I là giao điêm của AB và EM 

Ta có góc BIM=90 độ( do M đối E qua AB-gt)

          góc BAC = 90 độ( tam giác ABC vuông tại A-gt)

 mà hai góc vị trí đồng vị

-> IM song song AC

Xét tam giác  BAC có

M là trung điểm BC(gt)

IM song song AC( cmt)

-> I là trung điểm AB

Ta có

IA=IB=1/2AB( I là trung điểm AB-cmt)

IE=IM=1/2EM(M đối E qua AB-gt)

mà EM cắt AB tại I

-> EAMB là hình bình hành

Mà AB vuông góc EM ( M đối E qua AB-gt)

-> EAMB là hình thoi( đpcm)

Xong rùi nha bnoaoa