K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2023

a, Xét ΔABC vuông tại A ta có:

\(BC^2=AB^2+AC^2\left(py-ta-go\right)\)

        \(=6^2+8^2\)

        \(=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

b, Xét ΔABC và ΔABH ta có:

\(\widehat{B}\) \(chung\)

\(\widehat{BAC}=\widehat{AHB}=90^0\)

→ΔABC ∼ ΔABH(g-g)

\(\rightarrow\dfrac{AB}{BH}=\dfrac{BC}{AB}\\ \rightarrow AB.AB=BH.BC\\ \Rightarrow AB^2=BH.BC\)

c, Vì \(\dfrac{AB}{BH}=\dfrac{BC}{AB}\left(cmt\right)\)

\(hay\dfrac{6}{BH}=\dfrac{10}{6}\\ \Rightarrow BH=\dfrac{6.6}{10}=3,6\left(cm\right)\)

 

 

Xét ΔABC có AD là phân giác ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}hay\dfrac{6}{BD}=\dfrac{8}{CD}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BC}hay\dfrac{6}{BD}=\dfrac{8}{CD}=\dfrac{6+8}{10}=\dfrac{14}{10}=\dfrac{7}{5}\\ \Rightarrow BD=\dfrac{6.5}{7}=\dfrac{30}{7}\left(cm\right)\)

a: BC=căn 6^2+8^2=10cm

b: ΔABC vuông tại A có AH vuông góc BC

nên AB^2=BH*BC

c: BH=6^2/10=3,6cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{HBA}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: BA/BH=BC/BA

=>BA^2=BH*BC

BH=6^2/10=3,6cm

HC=10-3,6=6,4cm

d: AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=10/7

=>DB=30/7cm

11 tháng 9 2021

\(a,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\left(pytago\right)\)

\(b,\) Vì \(\widehat{BAC}=\widehat{AHB}\left(=90\right);\widehat{ABC}.chung\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)

\(c,\Delta ABC\sim\Delta HBA\left(cm.trên\right)\\ \Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow AB^2=BH\cdot BC\)

\(d,\) Vì AD là p/g góc A

\(\Rightarrow\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{3}{4}\\ \Rightarrow DC=\dfrac{4}{3}BD\)

Mà \(BD+DC=BC=10\)

\(\Rightarrow\dfrac{4}{3}BD+BD=10\\ \Rightarrow\dfrac{7}{3}BD=10\\ \Rightarrow BD=\dfrac{30}{7}\left(cm\right)\)

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)

c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)

a: Xét ΔABC vuông tại A và ΔHBA vuôg tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*CB

c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

BH=12^2/20=144/20=7,2cm

HC=20-7,2=12,8cm

d: AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=20/7

=>DB=60/7cm; DC=80/7cm

29 tháng 3 2023

.

17 tháng 4 2022

a. áp dụng định lý py-ta-go vào tam giác ABC, ta có:

AB2+AC2=BC2

62+82= BC2

36+64= BC2

BC2=100

BC= 10 (cm)

b. bạn thiếu đề rồi ạ.

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: BA/BH=BC/BA

=>BA^2=BH*BC

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100\)

hay BC=10cm

Xét ΔABC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

hay \(AB^2=BH\cdot BC\)

19 tháng 8 2021

c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)

Xét Δ ABI và Δ CBD có:

\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)

\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)

\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)

d) Xét ΔABH có:

BI là tia phân giác của \(\widehat{ABH}\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)

Xét ΔABC có:

BD là tia phân giác của \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)

Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)

 

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{B}\) chung

Do đó: ΔABC đồng dạng với ΔHBA

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

=>\(BA^2=BH\cdot BC\)

b:ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=12^2+16^2=400\)

=>\(BC=\sqrt{400}=20\left(cm\right)\)

\(BA^2=BH\cdot BC\)

=>\(BH=\dfrac{12^2}{20}=7,2\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2+7,2^2=12^2\)

=>\(HA^2=12^2-7,2^2=9,6^2\)

=>HA=9,6(cm)

c: Xét ΔABC có BD là phân giác

nên \(\dfrac{AD}{CD}=\dfrac{BA}{BC}=\dfrac{12}{20}=\dfrac{3}{5}\)

=>\(S_{ABD}=\dfrac{3}{5}\cdot S_{BCD}\)