Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta BAH\) và \(\Delta BCA\)có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BAH~\Delta BCA\) (g.g)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
\(\Delta ABC\)có AK là phân giác
\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)
suy ra: \(KB=\frac{30}{7}\) \(KC=\frac{40}{7}\)
c) Xét \(\Delta ABD\)và \(\Delta HBI\)có:
\(\widehat{ABD}=\widehat{HBI}\) (gt)
\(\widehat{BAD}=\widehat{BHI}=90^0\)
suy ra: \(\Delta ABD~\Delta HBI\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow\)\(AB.BI=BD.HB\)
d) \(S_{ABC}=\frac{1}{2}.AB.AC=24\)
\(\Delta ABH~\Delta CBA\) (câu a)
\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)
\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)
â) chứng minh AB2 = BH . BC
Xét : \(\Delta ABHva\Delta ABC,co\):
\(\widehat{B}\) là góc chung
\(\widehat{A}=\widehat{H}=90^o\)
Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)
=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng )
=> AB . AB = BH . BC
=> AB2 = BH . BC
b)
a, Xét ΔABC và ΔHBA có :
\(\widehat{A}=\widehat{AHB}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right)\)
b, Xét ΔABC vuông tại A, theo định lý Pi-ta-go ta có :
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có : \(\Delta ABC\sim\Delta HBA\left(cmt\right)\)
\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}\)
hay \(\dfrac{8}{AH}=\dfrac{10}{6}\)
\(\Rightarrow AH=\dfrac{8.6}{10}=4,8\left(cm\right)\)
c, Xét ΔAHB và ΔCHA có :
\(\widehat{BHA}=\widehat{AHC}=90^0\)
\(\widehat{BAH}=\widehat{C}\left(phụ\cdot với\cdot\widehat{B}\right)\)
\(\Rightarrow\Delta AHB\sim\Delta CHA\left(g-g\right)\)
\(\Rightarrow\dfrac{AH}{HC}=\dfrac{BH}{AH}\)
\(\Rightarrow AH^2=HC.BH\)
d, Xét ΔABD và ΔHBI có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{ABD}=\widehat{HBI}\left(phân\cdot giác\cdot BD\right)\)
\(\Rightarrow\Delta ABD\sim\Delta HBI\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BD}{BI}\)
\(\Rightarrow AB.BI=BD.HB\left(đpcm\right)\)
a) áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(9^2+AC^2=15^2\)
\(81+AC^2=225\)
\(AC^2=144\)
\(AC=12\)
Ta có: \(AD+DC=AC\)( hình vẽ )
\(4,5+DC=12\)
\(DC=7,5\)
hình tự vẽ đi
d) Xét \(\Delta BAI\)và \(\Delta BDA\)có :
\(\widehat{ABD}\)( chung ) ; \(\widehat{AIB}=\widehat{BAD}=90^o\)
\(\Rightarrow\Delta ABI\approx\Delta DBA\left(g.g\right)\)
\(\Rightarrow\frac{AB}{BI}=\frac{BD}{AB}\)\(\Rightarrow BI.BD=AB^2=81\)
Mà BH.BC = AB2 = 81 ( câu c )
\(\Rightarrow\)BI.BD = BH.BC
\(\Rightarrow\)\(\frac{BH}{BI}=\frac{BD}{BC}\)
Xét \(\Delta BHI\)và \(\Delta BDC\)có :
\(\frac{BH}{BI}=\frac{BD}{BC}\); \(\widehat{DBC}\)( chung )
\(\Rightarrow\Delta BHI\approx\Delta BDC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BIH}=\widehat{BCD}\)hay \(\widehat{BIH}=\widehat{ACB}\)
a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
S ABC=1/2*6*8=3*8=24cm2
Xet ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5=8/8=1
=>AD=3cm; CD=5cm
b: Xét ΔABC vuông tại A và ΔHCA vuông tại H co
góc C chung
=>ΔABC đồng dạngvới ΔhAC
c: IH/IA=BH/BA
AD/DC=BA/BC
mà BH/BA=BA/BC
nên IH/IA=AD/DC
d:
góc AID=góc BIH=góc ADB=góc ADI
=>ΔADI can tại A
a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
b: BC=căn 6^2+8^2=10
AH=6*8/10=4,8
c: ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
d: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>BA/BH=BD/BI
=>BA*BI=BH*BD
góc AID=góc BIH=90 độ-góc DBC
góc ADI=90 độ-góc ABD
mà góc DBC=góc ABD
nên góc AID=góc ADI
=>ΔADI cân tại A
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc ABH chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=8/8=1
=>AD=3cm; CD=5cm
c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có
góc HBI=góc ABD
=>ΔBHI đồng dạng với ΔBAD
=>BH/BA=BI/BD
=>BH*BD=BA*BI
e) \(AH\perp BC\)(giả thiết).
\(\Rightarrow\Delta HAB\)vuông tại H.
\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)
Xét \(\Delta ABC\)có phân giác BD (giả thiết).
\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).
\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)
\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).
\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)
Vì \(\Delta ABC\)vuông tại A (giả thiết).
\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)
\(\Rightarrow\Delta ADB\)vuông tại A.
\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)
Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))
\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)
Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)
\(\Rightarrow9+S_{BCD}=24\)(thay số).
\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)
Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)
(Vì BD phân giác góc B nên phân giác góc A là AM nhé)
a) Tính BC
Ta có ΔABC vuông tại A (gt)
⇒ BC2 = AB2 + AC2 (ĐL Py-ta-go)
Hay BC2 = 62 + 82
BC2 = 100
Vậy BC = 10 (ddvddd)
b) C/M AB2 = BH.BC
Xét ΔABC và ΔHBA, ta có:
\(\widehat{BAC}=\widehat{AHB}=90^0\left(gt\right)\)
\(\widehat{B}:chung\)
⇒ ΔABC ∼ ΔHBA (g-g)
⇒ \(\frac{AB}{BH}=\frac{BC}{AB}\)
Vậy AB2 = BH.BC
c) C/M H nằm giữa B và D
Ta có AB<AC (6<8)
⇒ \(\widehat{ACB}< \widehat{ABC}\)
Mà \(\widehat{ACB}+\widehat{ABC}=90^0\) (ΔABC vuông tại A)
⇒ \(\widehat{ACB}< 45^0\)
Mà \(\widehat{ACB}=\widehat{BAH}\) (2 tam giác đồng dạng)
⇒ \(\widehat{BAH}< 45^0\)
Mà \(\widehat{BAM}=45^0\) (AM phân giác \(\widehat{A}\))
⇒ \(\widehat{BAH}< \widehat{BAM}\)
Vậy H nằm giữa B và M
BẠN ƠI, VÌ BẠN GHI ĐỀ LÀ HAI PHÂN GIÁC AD VỚI BD NÊN ĐỀ Ở DƯỚI TRỞ NÊN LOẠN, BẠN SỬA ĐỀ ĐI RỒI MÌNH GIẢI CHO NHA.
Chuyển BD thành BM nhé