K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
21 tháng 6 2021

Xét tam giác \(BGA\)vuông tại \(G\)

\(BA^2=BG^2+GA^2=\frac{4}{9}\left(BE^2+AM^2\right)\Leftrightarrow BE^2+\frac{BC^2}{4}=\frac{27}{2}\)(1)

Xét tam giác \(ABE\)vuông tại \(A\)

\(BE^2=AB^2+AE^2=6+\frac{1}{4}AC^2\)(2)

Từ (1) và (2) suy ra \(BC^2+AC^2=30\)

mà \(BC^2=AC^2+6\)

suy ra \(BC^2=18\Rightarrow BC=3\sqrt{2}\left(cm\right)\).

18 tháng 5 2018

\(\text{Xét: }\Delta BGA\perp G\text{ thì }BG^2+GA^2=AB^2\)

\(\Leftrightarrow\frac{4}{9}\left(BE^2+AD^2\right)=AB^2\)

\(\Leftrightarrow BE^2+\frac{1}{4}BC^2=\frac{27}{2}\)(1)

\(\text{Có trong: }\Delta ABE\text{ thì }AB^2+AE^2\)

\(\Leftrightarrow6+\frac{1}{4}AC^2=BE^2\)(2)

Từ (1) và (2), ta có: 

\(BC^2+AC^2=30\left(cm\right)\)

Mà: \(BC^2-AC^2=AB^2=6\left(cm\right)\)

Nên \(BC^2=18\)

\(\Rightarrow BC=3\sqrt{2}\left(cm\right)\)

18 tháng 5 2018

Áp dụng Pitago cho tg ABG

Áp dụng Pitago cho tg BDG

Tiếp tục làm tiếp nha bạn :")

19 tháng 6 2023

a)

Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)

Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)

Trong tam giác ABN vuông tại A, đường cao AG, ta có:

\(AB^2=BG.BN\) (hệ thức lượng)

\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)

Tam giác ABN vuông tại A

\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)

Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)

Áp dụng đl pytago vào tam giác ABC: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)

Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải

7 tháng 9 2018

em học lớp 7 nên không biết làm đúng cho em đi

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

16 tháng 12 2015

Gọi G là giao điểm của AD và BE, ta có :

\(AB^2=BG.BE=\frac{2}{3}BE^2\Leftrightarrow6=\frac{2}{3}BE^2\Leftrightarrow BE=3\)

Theo định lí Pi-ta-go, ta có :

\(AE=\sqrt{BE^2-AB^2}=\sqrt{3}\Rightarrow AC=2\sqrt{3}\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{18}\)