Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH vuông tại H và ΔADH vuông tại H có
AH chung
BH=DH(gt)
Do đó: ΔABH=ΔADH(hai cạnh góc vuông)
Suy ra: AB=AD(hai cạnh tương ứng)
Xét ΔABD có AB=AD(cmt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)(gt)
nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
=>AB=AD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>AH=EC
d: Xét ΔCIA có
CH,AE là đường cao
CH cắt AE tại D
=>D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
a,xét tam giác AHB và tam giác AHD
có góc bằng nhau
canh bằng nhau\suy ra hai tam giácbằng nhau
suy ra ^bah=^DAH
mà BAH=30 độ(ABH=60 độ xét tam giác AHB vuông suy ra BAH=30 độ)
suy ra ^BAD=60 độ(1)
lại có BA=AD
suy ra tam giấcBDA cân (2) từ 1 vf 2 suy ra ABD dều
b,TA có ^DAC+^DAB=9o độ
suy ra DAC=30 độ
suy ra tam giác DAC cân
suy ra AD = DC
xét tam giác ADH và tam giác CDE
có AD=DC
ADH=CDE
suy ra 2 tam giác bằng nhau
suy ra AH = CE
tích đung cho mik nha
cảm ơn nha
còn bài nào thì cứ đăng lên
a: Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
=>AB=AD
b: Ta có: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}+30^0=90^0\)
=>\(\widehat{ABC}=60^0\)
Xét ΔABD cân tại A có \(\widehat{ABD}=60^0\)
nên ΔABD đều
c: Ta có: ΔABD đều
=>\(\widehat{BAD}=60^0\)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)
=>\(\widehat{CAD}=90^0-60^0=30^0\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)
Do đó: ΔDHA=ΔDEC
=>AH=EC
d: Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(\dfrac{5}{BC}=sin30=\dfrac{1}{2}\)
=>\(BC=5\cdot2=10\left(cm\right)\)
Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)
=>\(\dfrac{AH}{5}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(AH=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
à câu A là AE=CH nha