\(\widehat{B}=4\widehat{C}\). Tìm số đo của góc B

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

Do AD là tia phân giác A => \(\widehat{A_1}=\widehat{A}_2\)

Xét tam giác ADB có:\(\widehat{A_1}+\widehat{ADB}+\widehat{B}=180\)

Hay A1 + 80 + B = 180 => A1 + B = 100 (1)

Do góc ADB + ADC = 180 (Kề bù)

=> 80+ ADC = 180

ADC = 100

Xét tam giác ADC có: \(\widehat{A_2}+\widehat{ADC}+\widehat{C}=180\)

A2 + 100 + C = 180

A2 + C = 80 (2)

Từ 1, 2, có: A2 + C + 20 = A1 + B = 100

=> A1 + C + 20 = A1 + 3/2C

3/2C - C = 20

=> 1/2C= 20

C= 40

Mà B = 3/2 C => B = 3/2 . 40 = 60

Xét tam giác ABC có: A+B+C = 180

hay A + 60+40=180

A= 80

Vậy ...........

2/ 

15 tháng 8 2017

Xét tam giác ABC có : A + B + C = 180 => B+C = 180 - A => B+C = 180 - 80 => B+C = 100 

Do BI;CI lần lượt là phân giác của B; C => B1 = B2 = 1/2 B ; C1 = C2 = 1/2 C 

Xét tam giác IBC có: 

B2+BIC+C2 = 180 

(B2+C2) + BIC = 180

1/2 B + 1/2 C + BIC = 180

1/2 ( B+C) +BIC = 180

hay 1/2 . 100 + BIC = 180

BIC = 180 - 50

BIC = 130

Vậy ...

19 tháng 10 2017

A B C 110*

=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\widehat{A}+\widehat{B}=180^o-110^o\)

\(\widehat{A}+\widehat{B}=70^o\)

=> \(\widehat{A}\) = 70o:(3+4).3 = 30o

=> \(\widehat{B}\) = 70o - 30o = 40o

Vậy  = 30o ; \(\widehat{B}\) = 40o và \(\widehat{C}\) = 110o

29 tháng 10 2017

Ta có \(\hept{\begin{cases}\widehat{A}-\widehat{B}=22^0\\\widehat{B}-\widehat{C=22^0}\end{cases}}\) (*)

\(\Rightarrow\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\)

\(\Leftrightarrow\widehat{A}+\widehat{C}=2\widehat{B}\) (1)

  Và \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Vì 3 góc của tam giác) 

\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}\)(2)

Từ (1) và (2)

 \(\Rightarrow2\widehat{B}=180^0-\widehat{B}\)

 \(\Leftrightarrow3\widehat{B}=180^0\)

\(\Rightarrow\widehat{B}=\frac{180^0}{3}=60^0\)

Từ (*)

\(\Rightarrow\widehat{A}-\widehat{B}+\widehat{B}-\widehat{C}=22^0-22^0=0^0\)(3)

Từ (1) ;(3) và góc B = 60 độ

\(\hept{\begin{cases}\widehat{A}+\widehat{C}=2\cdot60^0=120^0\\\widehat{A}-\widehat{C}=0^0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\widehat{A}=60^0\\\widehat{C}=60^0\end{cases}}\)

Vậy, \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)