Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 110*
=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{A}+\widehat{B}=180^o-110^o\)
\(\widehat{A}+\widehat{B}=70^o\)
=> \(\widehat{A}\) = 70o:(3+4).3 = 30o
=> \(\widehat{B}\) = 70o - 30o = 40o
Vậy  = 30o ; \(\widehat{B}\) = 40o và \(\widehat{C}\) = 110o
1)
Tổng của \(\widehat{B}\) và \(\widehat{C}\) là:
\(180^o-60^o=120^o\)
Ta có \(\widehat{B}=2\widehat{C}\Leftrightarrow\widehat{B}=\frac{2}{1}\widehat{C}\)
Áp dụng bài toán tổng tỉ.
Tổng số phần bằng nhau là:
2 + 1 = 3 phần.
Góc B là:
120 : 3 x 2 = 80 độ
Góc C là:
120 - 80 = 40 độ.
Vậy ......................
2) Theo đề ta có:
\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\) và \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{2+3+4}=\frac{180^o}{9}=20^o\)
\(\hept{\begin{cases}\frac{\widehat{A}}{2}=20^o\Rightarrow\widehat{A}=20^o.2=40^o\\\frac{\widehat{B}}{3}=20^o\Rightarrow\widehat{B}=20^o.3=60^o\\\frac{\widehat{C}}{4}=20^o\Rightarrow\widehat{C}=20^o.4=80^o\end{cases}}\)
Vậy ..............................
Bạn tự vẽ hình nha
Bài giải
a, Ta có : Tổng 3 trong một tam giác bằng 1800
=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
Hay : \(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)\)
\(\Rightarrow\widehat{A}=180^0-\left(70^0+30^0\right)\)
\(\Rightarrow\widehat{A}=80^0\)
Mặt khác : tia phân giác của góc A cắt ABC tại D
\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{80^0}{2}=40^0\)
Ta có : \(\widehat{ADC}=180^0-\left(\widehat{DAC}+\widehat{C}\right)\)
\(\Rightarrow\widehat{ADC}=180^0-\left(40^0+30^0\right)\)
\(\Rightarrow\widehat{ADC}=110^0\)
Bài 1:
\(\widehat{A}\div\widehat{B}\div\widehat{C}=1\div2\div3=\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Tổng ba góc của một tam giác)
Áp dụng t/d dãy tỉ số bằng nhau, ta có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\frac{180^0}{6}=30\)
\(\Rightarrow\widehat{A}=30.1=30^0\)
\(\widehat{B}=30.2=60^0\)
\(\widehat{C}=30.3=90^0\)
Vậy .....
Bài 2:
Gọi số đo các góc của tam giác ABC lần lượt là: a;b;c (\(a;b;c\inℕ^∗\) )
Ta có: \(a-b=18^0\Rightarrow a=18+b\)
\(b-c=18^0\Rightarrow c=b-18\)
Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow a+b+c=180^0\)
\(\Leftrightarrow18+b+b+b-18=180^0\)
\(\Leftrightarrow3b=180^0\Rightarrow b=60\Rightarrow\widehat{B}=60^0\)
\(\Rightarrow\widehat{A}=18^0+\widehat{B}=18^0+60^0=78^0\)
\(\Rightarrow\widehat{C}=180^0-60^0-78^0=42^0\)
Vậy .....
Câu 1
a.
Xét \(\Delta ABC\) có :
\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )
\(\Rightarrow\widehat{BCA}=40^o\) (1)
Ta có Ax là tia đối của AB
suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)
\(\widehat{CAx}=80^o\)
lại có Ay là tia phân giác \(\widehat{CAx}\)
\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)
Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)
mà chúng ở vị trí so le trong
\(\Rightarrow\) Ay//BC
Bài 2
Rảnh làm sau , đến giờ học rồi .
Ta có \(\hept{\begin{cases}\widehat{A}-\widehat{B}=22^0\\\widehat{B}-\widehat{C=22^0}\end{cases}}\) (*)
\(\Rightarrow\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\)
\(\Leftrightarrow\widehat{A}+\widehat{C}=2\widehat{B}\) (1)
Và \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Vì 3 góc của tam giác)
\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}\)(2)
Từ (1) và (2)
\(\Rightarrow2\widehat{B}=180^0-\widehat{B}\)
\(\Leftrightarrow3\widehat{B}=180^0\)
\(\Rightarrow\widehat{B}=\frac{180^0}{3}=60^0\)
Từ (*)
\(\Rightarrow\widehat{A}-\widehat{B}+\widehat{B}-\widehat{C}=22^0-22^0=0^0\)(3)
Từ (1) ;(3) và góc B = 60 độ
\(\hept{\begin{cases}\widehat{A}+\widehat{C}=2\cdot60^0=120^0\\\widehat{A}-\widehat{C}=0^0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\widehat{A}=60^0\\\widehat{C}=60^0\end{cases}}\)
Vậy, \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)