\(\frac{3}{5}\). Hãy tính tỉ số lượng giác của C.T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2020

\(\cos C=\sqrt{1-\sin^2C}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}\)

\(\Rightarrow\cos C=\frac{4}{5}\)

\(\Rightarrow\tan C=\frac{\sin C}{\cos C}=\frac{3}{5}:\frac{4}{5}=\frac{3}{4}\)và \(\cot C=\frac{4}{3}\)

Ta có: \(\widehat{C};\widehat{B}\)là hai góc phụ nhau

\(\Rightarrow\hept{\begin{cases}\sin C=\cos B\\\cos C=\sin B\end{cases};\hept{\begin{cases}\tan C=\cot B\\\cot C=\tan B\end{cases}}}\)

\(\Rightarrow\sin B=\frac{4}{5};\cos B=\frac{3}{5};\tan B=\frac{4}{3};\cot B=\frac{3}{4}\)

3 tháng 9 2020

Ta có: \(\sin C=\frac{AB}{BC}=\frac{3}{5}\) 

=> \(\frac{AB}{3}=\frac{BC}{5}=k\left(k\inℕ\right)\)

=> \(\hept{\begin{cases}AB=3k\\BC=5k\end{cases}}\)

=> \(AC=\sqrt{\left(5k\right)^2-\left(3k\right)^2}=\sqrt{16k^2}=4k\)

Đến đây thì xong rồi:))

\(\sin B=\frac{AC}{BC}=\frac{4k}{5k}=\frac{4}{5}\) ; \(\cos B=\frac{AB}{BC}=\frac{3k}{5k}=\frac{3}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{4k}{3k}=\frac{4}{3}\) ; \(\cot B=\frac{AB}{AC}=\frac{3k}{4k}=\frac{3}{4}\)

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu

17 tháng 4 2017

Xem lại chương lượng giác trong tam giác vuông nhé

11 tháng 7 2018

neu ai tra loi dung cho minh trong may tieng nay to k cho1 nink

12 tháng 7 2017

a. Ta thấy \(\left(a\sqrt{5}\right)^2=\left(a\sqrt{3}\right)^2+\left(a\sqrt{2}\right)^2\Rightarrow AB^2=BC^2+AC^2\)

\(\Rightarrow\Delta ABC\)vuông tại C

b. \(\sin B=\frac{AC}{AB}=\frac{\sqrt{2}}{\sqrt{5}}=\frac{\sqrt{10}}{5};\cos B=\frac{CB}{AB}=\frac{\sqrt{3}}{\sqrt{5}}=\frac{\sqrt{15}}{5}\)

\(\tan B=\frac{AC}{AB}=\frac{\sqrt{6}}{3};\cot B=\frac{\sqrt{6}}{2}\)

\(\sin A=\cos B=\frac{\sqrt{15}}{5};\cos A=\sin B=\frac{\sqrt{10}}{5}\)

\(\tan A=\cot B=\frac{\sqrt{6}}{2};\cot A=\tan B=\frac{\sqrt{6}}{3}\) 

12 tháng 7 2017

Thanks bạn nhìu

20 tháng 11 2023

Xét ΔABC vuông tại A có

\(sinB=sin56\simeq0,83\)

\(cosB=cos56\simeq0,56\)

\(tanB=tan56\simeq1,48\)

\(cotB=cot56\simeq0,67\)

Xét ΔABC vuông tại A có

\(cosC=sinB\simeq0,83\)

\(sinC=cosB\simeq-0,56\)

\(cotC=tanB=tan56\simeq1,48\)

\(tanC=cotB\simeq0,67\)

20 tháng 10 2021

Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\\ \cos\widehat{B}=\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{4}{3}\\ \cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{3}{4}\)