\(\frac{a}{b}=\frac{a+b}{a}\). Chứ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

H A B C

a)Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI ﴾1﴿
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt

NHỚ TK MK NHA

15 tháng 10 2016

A B D C E

a/ \(S_{ABD}=\frac{1}{2}AB.AD.sin\widehat{BAD}=AB.AD.\frac{\sqrt{2}}{4}\)

\(S_{ACD}=\frac{1}{2}AC.AD.sin\widehat{CAD}=AC.AD.\frac{\sqrt{2}}{4}\)

\(S_{ABC}=\frac{1}{2}AB.AC\)

Suy ra : \(S_{ABC}=S_{ABD}+S_{ACD}\Leftrightarrow\frac{1}{2}AB.AC=\frac{\sqrt{2}}{4}AD.\left(AB+AC\right)\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{\sqrt{2}}{AD}\)

b/ Tương tự 

5 tháng 11 2019

\(\Delta ABC\)vuông tại A có \(sinB=\frac{\sqrt{3}}{2}\Rightarrow\widehat{B}=60^0\)

\(\Rightarrow\widehat{C}=30^0\)

Lúc đó \(\Delta ABC\)là nửa tam giác đều 

\(\Rightarrow AB=\frac{1}{2}BC\Rightarrow BC=2AB=2\left(cm\right)\)

Áp dụng định lý Py-ta-go vào \(\Delta ABC\)vuông tại A, được:

\(AC^2=BC^2-AB^2=2^2-1^2=3\)

\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)

5 tháng 11 2019

Áp dụng ht lượng trong tam giác vuông có :
\(sinB=\frac{AC}{BC}\Leftrightarrow\frac{\sqrt{3}}{2}=\frac{AC}{BC}\Leftrightarrow AC=\frac{BC\sqrt{3}}{2}\)

Áp dụng đinh lí Py-ta- go vào tam giác vuông ABC có :

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow1+\left(\frac{\sqrt{3}BC}{2}\right)^2=BC^2\)

\(\Leftrightarrow1+\frac{3BC^2}{4}-BC^2=0\)

\(\Leftrightarrow1=\frac{BC^2}{4}\Leftrightarrow BC^2=4\Rightarrow BC=2\left(cm\right)\)

\(\Rightarrow AC=\sqrt{3}\left(cm\right)\)

Chúc bạn học tốt !!!