K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

AB/3=AC/4=k    (k>0)

suy ra AB=3k và AC=4k

Do tam giác ABCvuông tại A 

áp dụng định lí pytago vào tam giác vuông ABC ta có:

BC^2=AB^2+AC^2

suy ra BC^2=25k^2 hay 225=25k^2

suy ra k=3

suy ra AB=9cm;AC=12cm

chắc chắn đúng nhé 

28 tháng 2 2019

Bạn ơi cái khúc áp dụng định lý rồi suy ra công thức bạn có thể làm rõ hơn được ko ?? 

10 tháng 3 2017

a) ta có :

BC^2= 225 cm (1)

AC^2+BC^2=9^2+12^2=225 cm(2)

từ (1) và (2) suy ra:BC^2=AC^2+AB^2

=>tam giác ABC vuông tại a

20 tháng 1 2017

Mau trả lời giúp

23 tháng 2 2017

hình như sai đề rùi bạn

16 tháng 3 2022

nhanh giúp mình với đang cần gấp

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: AH=12cm

c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

d: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

18 tháng 3 2021

a/ Ta có: \(\Delta\) ABC cân tại A=> AB=AC

mà AC=10cm => AB=10cm

Ta có: AH là đường cao \(\Delta\) ABC => \(\Delta\) ABH vuông tại H

=> \(AH^2+BH^2=AB^2\) ( định lý Pytago)

dựa vào số liệu đầu bài và số liệu đã tính => BH=6cm

Ta có \(\Delta\) ABC cân, AH là đường cao => AH cũng là trung tuyến => H trung điểm BC

=> BH=CH=6cm

b/ Ta có: \(\Delta\) KAH vuông tại K => \(A_1+H_1=90^0=>H_1=90^o-A_1\left(1\right)\)

Ta có: \(\Delta\) ADH vuông tại D => \(A_2+H_2=90^o=>H_2=90^o-A_2\left(2\right)\)

Ta có: \(A_1=A_2\left(t.gABC\right)cân,AHlàđườngcaovàcũngsẽlàphângiác\left(\right)\) (3)

từ \(\left(1\right)\left(2\right)và\left(3\right)\) => \(H_1=H_2\)

Xét \(\Delta\) AKH và \(\Delta\) ADH có: \(\left\{{}\begin{matrix}A_1=A_2\\AHchung\\H_1=H_2\left(cmt\right)\end{matrix}\right.\)

=> \(\Delta\) AKH=\(\Delta\) ADH(g.c.g)

=> AK=AD

29 tháng 4 2019

a)Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2<=>BC2-AB2=AC2=>AC2=152-122=81=>AC=9

b) Xét \(\Delta\)DBM và \(\Delta\)DCM:

                 DMB=DMC=90

                 BM=CM( M là trung điểm BC)

                 DM:chung

=>\(\Delta\)DBM=\(\Delta\)DCM(c-g-c)=>DC=DB

Xét \(\Delta\)ACD:A=90=>DC>DA

Mà DC=DB(chứng minh trên)

Nên:AD<DB

c)Xét \(\Delta\)BCG:BA \(\perp\)CG;GM\(\perp\)BC

Mà BA cắt GM tại D 

Nên: D là trực tâm tam giác BCG

Lại có:CH\(\perp\)GB

Suy ra: C;D;H thẳng hàng

c)Xét \(\Delta\)GBC:GM là đường cao đồng thời là đường trung tuyến

=>\(\Delta\)GBC cân tại G=>GM là đường phân giác

  Xét \(\Delta\)GDA và \(\Delta\)GDH:

               GAD=GHD=90

               GD:chung

                AGD=HGD

=>\(\Delta\)GAD=\(\Delta\)GDH(cạnh huyền- góc nhọn)

=>AD=HD=>DAH=DHA=(180-HDA)/2

Xét \(\Delta\)DBC:DC=DB(chứng minh trên)=>DCB=DBC=(180-BDC)/2

Do HDA=BDC(đối đỉnh)

Nên AHD=BCD

Mà C;H;D thẳng hàng(chứng minh trên)

Suy ra AH//BC

29 tháng 4 2019

A C G A H M D

15 tháng 1 2019

sai đề, sửa: BC=15cm 

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3AC}{4}\)

Áp dụng định lý pytago vào tam giác vuông ABC. ta có:

AB2+AC2=BC2

=> \(\left(\frac{3}{4}AC\right)^2+AC^2=15^2\)

\(AC^2.\left(\frac{9}{16}+1\right)=15^2\Rightarrow AC^2.\left(\frac{5}{4}\right)^2=15^2\)

\(\Rightarrow AC^2=15^2.\left(\frac{4}{5}\right)^2=12^2\Rightarrow AC=12\)

\(AB=\frac{3.AC}{4}=9\)

-bài này vẽ hình làm cảnh à :V