K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2015

a,Xet tam giac ABD va tam giac EBD co:

goc ABD=goc EBD(vi BD la phan giac goc ABC)

BD:chung

gocBAD=goc DEB (=90°)

=>tam giac ABD=tam giac EBD(g.c.g)

b,Vi tam giac ABD=tam EBD(cmt)

=>AD=DE(dpcm)

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

b: XétΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE và DA=DE

=>BD là đường trung trực của AE

hay BD\(\perp\)AE

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

góc FBE chung

=>ΔBEF=ΔBAC

=>BF=BC

c: ΔBFC cân tại B

mà BD là phân giác

nên BD vuông góc CF

=>BD//AH

=>AH vuông góc AE

5 tháng 8 2015

a) Hai tam giác = nhau theo trường hợp cạnh huyền góc nhọn (tự c/m)

b) Từ 2 tam giác = nhau ở phần a => AD= DE

Ta có tam giác ADF =  tam giác EDC theo trường hợp góc cạnh góc (tự c/m)

=> DF= DC ( 2 cạnh tg ứng)

c) Xét tam giác ADF, có : góc A= 90 độ

=> DF là cạnh lớn nhất (quan hệ giữa góc và cạnh đối diện)

=> AD  < DF 

Mà DF= DC (chứng minh b)

=> AD < DC (đpcm)

5 tháng 8 2015

b) Xét tam giác ADF và tam giác EDC, có: 

Góc A= góc E (=90 độ)

AD= AE (vừa mình đã ns rồi) 

Góc ADF= góc EDC (đối đỉnh)

Từ 3 điều trên => tam  giác ADF =  tam giác EDC (g-c-g)

=> DF= DC (2 cạnh tg ứng)

b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)

Suy ra: BA=BE(hai cạnh tương ứng)

hay ΔBAE cân tại B

c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔABD=ΔEBD)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

mà DE<DC(ΔDEC vuông tại E)

nên DE<DF

11 tháng 8 2021

a, Xét tam giác ABD và tam giác EBD có:
     góc BAD=BED(tam giác abc vuông, DE vuông góc BC)
     BD=BD(chung)
     góc ABD=EBD (BD là phân giác)
=)tam giác ABD=tam giác EBD(cạnh huyền-góc nhọn)
vậy.....
b,gọi giao của AE và BD là O
ta có tam giác ABD=tam giác EBD
=)AB=BE ( 2 cạnh tưng ứng)
xét tam giác ABO và tam giác EBO có:
AB=BE (cmt)
góc ABO=EBO ( BD là phân giác)
BO=BO ( chung)
=)tam giác ABO=EBO (c-g-c)
=)AO=OE ( 2 cạnh tương ứng)(1)
   AOB=EOB( 2 góc tương ứng)
mà AOB+EOB=180 độ ( 2 góc kề bù)
=)AOB=EOB=180:2=90độ
=)BO vuông góc AE (2)
từ(1) và (2)=)BO là trung trực AE
vậy....
c, Ta có tam giác DEC vuông tại E
=)DC>DE ( trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà DE=DA ( tam giác ABD= tam giác EBD)
=)DC>DA
hay DA<DC
vậy....


  
 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên BA=BE và DA=DE

Ta có: BA=BE

nên B nằm trên đường trung trực của AE\(\left(1\right)\)

Ta có: DA=DE

nên D nằm trên đường trung trực của AE\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BD là đường trung trực của AE

5 tháng 4 2018

a)  Xét 2 tam giác vuông   \(\Delta ABD\) và   \(\Delta EBD\)  có:

\(AD\)  chung

\(\widehat{ABD}=\widehat{EBD}\)  (gt)

suy ra:   \(\Delta ABD=\Delta EBD\)  (ch_gn)

b)   \(\Delta ABD=\Delta EBD\)

\(\Rightarrow\)\(AD=ED\)

Xét  2 tam giác vuông  \(\Delta ADF\) và     \(\Delta EDC\) có:

\(AD=ED\)(cmt)

\(\widehat{ADF}=\widehat{EDC}\)  (dd)

suy ra:   \(\Delta ADF=\Delta EDC\) (cgv-gn)

\(\Rightarrow\)\(DF=DC\)

hay   \(\Delta DFC\)cân tại   \(D\)