Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C N H M P O
a,b ko khó nên bạn tự giải nha
c)Gọi O la giao điểm của NP và AM
=> O là trung điểm của AM và OM=OA=ON=OP
Xét tam giác AHM vuông tại H
Có O là td của AM (cmt)
=>HO la đường trung tuyến ứng với cạnh huyền AM
=>HO=OA=OM
mà OM=OA=OP=ON (cmt)
=>HO=OP=ON=1/2NP
Xét tam giác NHP
có HO=OP=ON=1/2NP(cmt)
=>tam giác NHP vuông tại H
ứ giác HDAE có ^A=^D=^E=90 độ
nên HDAE là hình chữ nhật, suy ra AH=DE.
b) ∆BDH vuông tại D có DP là trung tuyến nên PD=PH
suy ra ∆PDH cân tại P nên ^PDH=PHD (1)
Do ADHE là hình chữ nhật nên ^ODH=^OHD (2)
công vế với vế của (1) và (2) ta có:
^PDH+^ODH=^PHD+^OHD=^OHP=90 độ
Hay ^PDO=90 độ, nên PD┴DE. (3)
Chứng minh tương tự cuãng có QE┴DE (4)
từ (3) và (4) suy ra PD//QE
nên DEQP là hình thang vuông.
c) BO và AH là đường cao của ∆ABQ nên O là trực tâm
của ∆ABQ. ADHE là hình chữ nhật nên S(ADHE)=2S(DHE) (5)
d)∆BDH vuông tại D có DP là trung tuyến
nên S(BDH)=2S(DPH) (6)
tương tự S(HAC) = 2S(HEQ) (7)
Cộng vế với vế của (5), (6), (7)
thì S(ABC)=2S(DEQP)
ABCHDEFK
a) Vì: ^BAC=90 độ (t/g ABC vuông tại A)
^AHE=90 độ (AH đường cao)
^HEA=90 độ (HE_|_AC)
^HDA=90 độ (HD_|_AB)
=> ADHE là hcn (có 4 góc _|_)
b) Vì ADHE là hcn (cmt)
=>DH//AB
=>DH//FA (1)
Vì ADHE là hcn (cmt)
=>DH=AE
mà AE=FA ( cmt)
=>DH=FA (2)
Tù (1) và (2)=> AFDH là hbh (theo dấu hiệu // và = nhau)
c) ( chờ chút ăn cơm xong r làm)
sorry