Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tai A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{8^2+15^2}=17\left(cm\right)\)
AH=8*15/17=120/17(cm)
c: AM*AB=AH^2
AN*AC=AH^2
=>AM*AB=AN*AC
a: Xét ΔHAC vuông tại A và ΔBAC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔBAC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
BH=3^2/5=1,8cm
c: AD*AB=AH^2
AE*AC=AH^2
=>AD*AB=AE*AC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
Suy ra: BC/BA=AC/AH
hay \(BC\cdot AH=BA\cdot AC\)
b: Xét ΔAMH vuông tại M và ΔAHB vuông tại H có
góc HAM chung
Do đó: ΔAMH\(\sim\)ΔAHB
( Hình ảnh chỉ mang tính chất minh họa )
a) Tính BC và AH :
Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :
AB2+AC2=BC2
82+152=BC2
⇒BC=17(cm)
Ta có : SABC=12⋅AB⋅AC=12⋅AH⋅BC
⇔AH=AB⋅ACBC=8⋅1517=12017(cm)
b) Có Aˆ=900(giả thiết), Mˆ=900(hình chiếu), Nˆ=900(hình chiếu)
=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).
Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.
⇒MN=AH=12017(cm)
c) Vì N là hình chiếu của H trên AC ⇒N∈AC
mà MH//AN(hcn) => MH//AC
Theo hệ quả của định lý Ta-let => AMAB=ANAC
Suy ra : AM⋅AC=AN⋅AB(đpcm)
b, chứng minh tương tự câu a:
ΔAHN đồng dạng ΔACH ⇒AH/AC=AN/AH
⇒AH⊃2;=AN.AC
⇒AB.AM=AC.AN=AH⊃2;
xét ΔAMN và ΔACB có : góc A chung
AM.AB=AN.AC⇒AM/AN=AC/AB
⇒ΔAMN đồng dạng ΔACB