K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

B H M A C N

( Hình ảnh chỉ mang tính chất minh họa )

a) Tính BC và AH :

Tam giác ABC vuông tại A, áp dụng định lý Pytago vào tam giác ABC :

AB2+AC2=BC2AB2+AC2=BC2

82+152=BC282+152=BC2

BC=17(cm)⇒BC=17(cm)

Ta có : SABC=12ABAC=12AHBCSABC=12⋅AB⋅AC=12⋅AH⋅BC

AH=ABACBC=81517=12017(cm)⇔AH=AB⋅ACBC=8⋅1517=12017(cm)

b) Có Aˆ=900A^=900(giả thiết), Mˆ=900M^=900(hình chiếu), Nˆ=900N^=900(hình chiếu)

=> Tứ giác AMHN là hình chữ nhật (tứ giác có 3 góc bằng 90 độ).

Vì tứ giác AMHN là hình chữ nhật => Hai đường chéo bằng nhau.

MN=AH=12017(cm)⇒MN=AH=12017(cm)

c) Vì N là hình chiếu của H trên AC NAC⇒N∈AC

mà MHMH//AN(hcn)AN(hcn) => MHMH//ACAC

Theo hệ quả của định lý Ta-let => AMAB=ANACAMAB=ANAC

Suy ra : AMAC=ANAB(đpcm)