\(\in\) BC). Trên tia HC lấy điểm...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét \(\Delta CDE\)\(\Delta CAB\) có :

\(\widehat{ACB}:chung;\widehat{CAB}=\widehat{CBE}=90^o\)

\(\Rightarrow\) \(\Delta CDE\) ~ \(\Delta CAB\)

\(\Rightarrow\frac{CD}{CA}=\frac{CE}{CB}\Leftrightarrow CE.CA=CD.CB\)

b) Xét \(\Delta DCA\)\(\Delta ECB\) có:

\(\frac{CD}{CA}=\frac{CE}{CB}\) ; \(\widehat{ACB}:chung\)

\(\Rightarrow\) \(\Delta DCA\) ~ \(\Delta ECB\)

c) Xét \(\Delta ABH\)\(\Delta CAH\) có :

\(\widehat{AHB}=\widehat{CHA}=90^o;\widehat{BAH}=\widehat{ACH}\)

\(\Rightarrow\) \(\Delta ABH\) ~ \(\Delta CAH\)

\(\Rightarrow\) \(\frac{HB}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=HB.HC\) mà AH = HD

\(\Rightarrow HD^2=HB.HC\)

d) Có: \(ED\perp HC;AH\perp HC\Rightarrow ED//AH\)

\(\Rightarrow\frac{AE}{AC}=\frac{HD}{HC}\Leftrightarrow AE.HC=HD.AC\)(1)

\(\Delta ABH\) ~ \(\Delta CAH\) \(\Rightarrow\frac{AB}{CA}=\frac{AH}{CH}\Leftrightarrow AB.CH=CA.AH\Leftrightarrow AB.CH=CA.HD\) (2)

Từ (1) và (2) => AE = AB ( đpcm )

6 tháng 5 2020

Bạn còn cần giúp nx khôngg

18 tháng 3 2020

Bạn tự vẽ hình nhé!
a) Xét tam giác ADC và tam giác BEC có:

\(\widehat{C}\)chung

\(\frac{CD}{CE}=\frac{CA}{CB}\)(2 tam giác vuông CDE và CAB đồng dạng)

=> Tam giác ADC đồng dạng với tam giác BEC (cgc) (đpcm)

b) Tam giác AHD vuông tại H (gt)

=> \(\widehat{BEC}=\widehat{ADC}=135^o\)

Nên \(\widehat{AEB}=45^o\)do đó tam giác ABE vuông tại A 

=> BE=\(AB\sqrt{2}=3\sqrt{2}\)

Nguồn: Đặng Thị Nhiên

18 tháng 3 2020

c) Tam giác ABE vuông tại A nên tia AM là phân giác BAC

\(\Rightarrow\frac{GB}{GC}=\frac{AB}{AC}\)

Vì tam giác ABC đồng dạng tam giác DEC nên:

\(\frac{AB}{AC}=\frac{ED}{DC}=\frac{AH}{HC}=\frac{HD}{HC}\)(DE//AH)

Do đó: \(\frac{GB}{GC}=\frac{HD}{HC}\Rightarrow\frac{GB}{GB+GC}=\frac{HD}{HD+HC}\Rightarrow\frac{GB}{GC}=\frac{AH}{AH+HC}\left(đpcm\right)\)

Nguồn: Đặng Thị Nhiên

26 tháng 6 2017

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, B] Đoạn thẳng n: Đoạn thẳng [A, H] Đoạn thẳng g_1: Đoạn thẳng [B, E] Đoạn thẳng i_1: Đoạn thẳng [A, F] Đoạn thẳng j_1: Đoạn thẳng [D, F] Đoạn thẳng k_1: Đoạn thẳng [A, G] A = (-0.43, -5.14) A = (-0.43, -5.14) A = (-0.43, -5.14) C = (21, -5.05) C = (21, -5.05) C = (21, -5.05) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm của k, i Điểm H: Giao điểm của k, i Điểm H: Giao điểm của k, i Điểm D: Giao điểm của c, i Điểm D: Giao điểm của c, i Điểm D: Giao điểm của c, i Điểm F: Giao điểm của b, f_1 Điểm F: Giao điểm của b, f_1 Điểm F: Giao điểm của b, f_1 Điểm E: Giao điểm của b, f Điểm E: Giao điểm của b, f Điểm E: Giao điểm của b, f Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm G: Giao điểm của h_1, i Điểm G: Giao điểm của h_1, i Điểm G: Giao điểm của h_1, i

Cô hướng dẫn nhé

a) \(\Delta DEC\sim\Delta AEF\left(g-g\right)\)

b) Từ định lý Pi-ta-go ta tìm được BC = 5 cm.

\(\Delta ABH\sim\Delta CBA\left(g-g\right)\Rightarrow\frac{AB}{BC}=\frac{AH}{AC}=\frac{BH}{BA}\Rightarrow\frac{3}{5}=\frac{AH}{4}=\frac{BH}{3}\)

Vậy thì AH = 2,4 cm, BH = 1,8 cm. Khi đó BD - BH + HD = BH + AH = 2,4 + 1,8 = 4,2 cm.

\(S_{ABD}=\frac{1}{2}.AH.BD=\frac{1}{2}.2,4.4,2=5.04\left(cm^2\right)\)

c) Ta cm được AG là phân giác, từ đó suy ra \(\frac{GB}{GC}=\frac{AB}{AC}\) (TC tia phân giác)

Mà \(\frac{AB}{AC}=\frac{AH}{HC}=\frac{HD}{HC}\) (TC tam giác đồng dạng)

Vậy \(\frac{GB}{GC}=\frac{HD}{HC}\)

29 tháng 4 2017

1) Xét tg CAB và tg CDE ta có:

CAB = CDE (= 90 độ)

C chung

\(\Rightarrow\) tg CAB\(\approx\) tg CDE (g.g)

\(\Rightarrow\) \(\dfrac{CA}{CD}\)= \(\dfrac{CB}{CE}\) \(\Rightarrow\) CA.CE=CB.CD

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

6 tháng 7 2016

Xét △DEC và △BAC có

góc D chung

góc CDE= góc CBA (=90)

Vậy △DEC đồng  dạng △BAC (g_g)

=> \(\frac{CD}{BC}=\frac{EC}{CA}\Rightarrow\frac{CD}{EC}=\frac{BC}{CA}\)

Xét △EAC và △DBC có

góc C chung

\(\frac{CD}{EC}=\frac{BC}{CA}\)(cmt)

Vậy △EAC đồng dạng △BDC (c_g_c)

=> góc CEA = góc CDB

Ta chứng minh được tam giác DHB vuông cân (góc H = 90 ,DH=HB)

=>gócHDB=45 hay là là góc BDA =45 (nó cùng là 1 góc nhưng do cách gọi tên thôi)

Ta có

\(\hept{\begin{cases}gocCEA+gocAEB=180^o\\gocCDB+gocBDA=180^0\end{cases}}\) 

Mà góc CEA = góc CDB

=> góc AEB=góc BDA 

Mà góc BDA=45

=> góc AEB=45

Xét tam giác EBA có

góc E=90

góc EBA=45

=>góc DAB =45

=> tam giác ABE vuông cân tại E

=> BA=BE

T I C K nha 

____________________Chúc bạn học tốt ______________________

6 tháng 7 2016

Các bạn giúp mình với ^^