Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
a: BC=10cm
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuong tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{BAI}=\widehat{BCD}\)
Do đó: ΔABI\(\sim\)ΔCBD
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
A B C H
Xét \(\Delta HAB\)và \(\Delta HCA\)có:
\(\widehat{AHB}=\widehat{CHA}=90^o\)
\(\widehat{HAB}=\widehat{HCA}\)(cùng phụ với \(\widehat{HAC}\))
Suy ra \(\Delta HAB\)đồng dạng với \(\Delta HCA\)(g.g)
a) Xét tam giác \(HBA\)và tam giác \(ABC\):
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
\(\widehat{B}\)chung
Suy ra tam giác \(HBA\)đồng dạng với tam giác \(ABC\).
b) Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(Định lí Pythagore)
\(\Leftrightarrow BC=\sqrt{AC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\).
\(AB^2=BH.BC\)(Hệ thức trong tam giác vuông)
\(\Leftrightarrow AH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(BH=BC-BH=10-3,6=6,4\left(cm\right)\)
(Bạn tự vẽ hình nhé).
a,Xét 2 tam giác vuông HBA và ABC có:
Góc H= góc A (=90 độ).
AB chung.
=> Tam giác HBA đồng dạng với tam giác ABC (ch-gv) (đpcm).
b, Áp dụng định lí Py-ta-go vào tam giác vuông ABC ta có:
BC2= AB2 + AC2
Hay BC2 = 62 + 82
= 36 + 64
= 100
=> BC= 10 (cm).
Ta có tam giác HBA đồng dạng với tam giác ABC (theo a)
=> BH/AB = AB/ BC = AH/AC
Hay BH/6 = 6/10 = AH/8
=> BH = 6.6/10 = 3,6 (cm).
AH= 8.6/10 = 4,8 (cm).
Vậy BC=10 cm, BH=3,6 cm và AH=4,8 cm.