K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: AD=ED

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

c: Ta có: ΔADF=ΔEDC

nên DF=DC và AF=EC

Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BC=BF

hay B nằm trên đường trung trực của CF(1)

Ta có: DF=DC

nên D nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BD\(\perp\)CF

15 tháng 4 2021

Lười đánh máy thật sự:vvv

a) Xét ∆ABD và ∆AED:

AD: cạnh chung

AB=AE(gt)

\(\widehat{BAD}=\widehat{CAD}\) (AD là phân giác góc BAC)

=> ∆ABD=∆AED (c.g.c)

=> BD=DC

b) Theo câu a: ∆ABD=∆AED

=> \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{DBK}=180^o\\\widehat{AED}+\widehat{DEC}=180^o\end{matrix}\right.\)

\(\Rightarrow\widehat{DBK}=\widehat{DEC}\)

Xét ∆DBK và ∆DEC:

BD=ED(cm ở a)

\(\widehat{DBK}=\widehat{DEC}\left(cmt\right)\)

\(\widehat{BDK}=\widehat{EDC}\) ( 2 góc đối đỉnh)

=> ∆DBK=∆DEC (g.c.g)

c) Gọi giao điểm của AD và BE là I

Xét ∆BAI và ∆EAI:

AB=AE(gt)

\(\widehat{BAI}=\widehat{EAI}\left(gt\right)\)

AI: cạnh chung

=> ∆BAI=∆EAI (c.g.c)

=> \(\left\{{}\begin{matrix}BI=EI\left(1\right)\\\widehat{AIB}=\widehat{AIE}\end{matrix}\right.\)

Mà \(\widehat{AIB}+\widehat{AIE}=180^o\) (2 góc kề bù)

=> \(\widehat{AIB}=\widehat{AIE}=90^o\left(2\right)\)

Từ (1) và (2) suy ra AD là trung trực của BE.

a) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

AE chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm

26 tháng 4 2021

mình chỉ cần hình thui ạ

 

3 tháng 5 2023

a)xét tg ABD và tg CBD có:

+ AB=BE(gt)

+ góc ABD = EBD (BD là phân giác)

+BD chung

=>tg ABD= tg EBD(c.gc)

b) vì tg ABD=tgEBD 

=> AD=DE và góc BAD = BED (=90 độ)

=> DE ⊥ BC

=> tg DEC có DC là cạnh huyền =>DC>ED mà ED=AD => DC>AD

c)xét tg BFE và tg BCA có:

+ Góc E = A (=90 độ)

+góc B chung

+ BE=BA

=>tg BFE =tg BCA (gcg)

=>BF=BC 

=> tg BFC cân tại B

vì S là td FC

=>BS vừa là trung tuyến vừa là đường cao

=>BS⊥FC (1)

tg BFC có: D là giao của 2 đg cao CA và FE

=> D là trực tâm => BD ⊥ FC (2)

từ 1 và 2 => B,D,S thẳng hàng

 

3 tháng 5 2023

Sửa đề: AB = BE (không phải AB = AE)

Gởi hình vẽ trước, đi công việc, tí sửa sau

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

1) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAD}\))

AD chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

2) Ta có: ΔABD=ΔAED(cmt)

nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)

Ta có: \(\widehat{ABD}+\widehat{KBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)(cmt)

nên \(\widehat{KBD}=\widehat{CED}\)

Xét ΔDBK và ΔDEC có 

\(\widehat{KBD}=\widehat{CED}\)(cmt)

BD=ED(cmt)

\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDBK=ΔDEC(g-c-g)

3) Ta có: ΔDBK=ΔDEC(cmt)

nên BK=EC(hai cạnh tương ứng)

Ta có: AB+BK=AK(B nằm giữa A và K)

AE+EC=AC(E nằm giữa A và C)

mà AB=AE(gt)

và BK=EC(cmt)

nên AK=AC

Xét ΔAKC có AK=AC(cmt)

nên ΔAKC cân tại A(Định nghĩa tam giác cân)