\(\widehat{c}=\widehat{ABI}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

A B C T K O P S E F G I

a) Áp dụng tính chất của góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, ta có: 

\(\widehat{TAB}=\widehat{TCA}\)

Suy ra \(\Delta\)TAB ~ \(\Delta\)TCA (g.g) \(\Rightarrow\frac{TA}{TC}=\frac{TB}{TA}\Rightarrow TA^2=TB.TC\)(đpcm)

Hai điểm A và K cùng nằm trên (T) nên \(\Delta\)ATK cân tại T => \(\widehat{TAK}=\widehat{TKA}\)(1)

Dễ thấy góc TKA là góc ngoài của \(\Delta\)ACK => \(\widehat{TKA}=\widehat{CAK}+\widehat{ACK}\)

\(\Rightarrow\widehat{CAK}=\widehat{TKA}-\widehat{ACK}\)(2)

Ta có: \(\widehat{BAK}=\widehat{TAK}-\widehat{TAB}=\widehat{TAK}-\widehat{ACB}\)(Do \(\widehat{TAB}=\widehat{ACB}\))

hay \(\widehat{BAK}=\widehat{TAK}-\widehat{ACK}\)(3)

Từ (1); (2) và (3) suy ra: \(\widehat{BAK}=\widehat{CAK}\)=> AK là tia phân giác của \(\widehat{BAC}\)(đpcm).

b) Ta có: \(\frac{TA}{TC}=\frac{TB}{TA}\)=> \(\frac{TP}{TC}=\frac{TB}{TP}\)(P và A thuộc (T))

Từ đó ta chứng minh được: \(\Delta\)TBP ~ \(\Delta\)TPC (c.g.c) => \(\widehat{TPB}=\widehat{TCP}\)

Xét \(\Delta\)BPC: Tia PT nằm ngoài tam giác thỏa mãn \(\widehat{TPB}=\widehat{TCP}\)

Vậy nên TP là tiếp tuyến của đường tròn ngoại tiếp \(\Delta\)BPC (đpcm).

c) Gọi giao điểm của của AT và EF kéo dài là G, EF cắt AP tại điểm I.

Ta thấy tứ giác BEFC nội tiếp (O) => \(\widehat{BCP}=\widehat{EFP}\)hay \(\widehat{EFP}=\widehat{TCP}\)

Mà \(\widehat{TPB}=\widehat{TCP}\)(cmt) => \(\widehat{EFP}=\widehat{TPB}\)

Vì 2 góc trên nằm ở vị trí so le trong nên TP // EF hay TP // GI

Lại có: \(\Delta\)ATP cân tại T có GI // TP (G\(\in\)AT; I\(\in\)AP) => \(\Delta\)AGI cân tại G => \(\widehat{GAI}=\widehat{GIA}\)(4)

 \(\widehat{EAI}=\widehat{GAI}-\widehat{GAE}\)(5);  \(\widehat{FAI}=\widehat{GIA}-\widehat{AFG}\)(6)

Dễ chứng minh \(\widehat{GAE}=\widehat{AFG}\)(7)

Từ (4); (5); (6) và (7) => \(\widehat{EAI}=\widehat{FAI}\) hay  \(\widehat{EAS}=\widehat{FAS}\)

Mà tứ giác AESF nội tiếp (O) => \(\widehat{EAS}=\widehat{EFS}\)và \(\widehat{FAS}=\widehat{FES}\)

Từ đó ta có: \(\widehat{EFS}=\widehat{FES}\)=> Tam giác ESF cân tại S => S nằm trên đường trung trực của EF

Mà EF là dây cung của (O) nên O cũng nằm trên trung trực của EF

Do đó SO là trung trực của EF hay \(SO\perp EF\)(đpcm).

4 tháng 5 2018

Xin lỗi bạn, 2 góc EFP và TPB là hai góc đồng vị, không phải so le trong nhé.

24 tháng 3 2020

khó quá bạn ơi 

1 tháng 5 2020

Phông chữ bạn ơi

1 tháng 5 2020

cái moéo j đây

2 tháng 11 2018

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

6 tháng 1 2017

 ta có : góc BEA =90 độ ( chắn nửa đt tâm O) 
góc ADC = 90độ ( chắn nửa đt tâm O') 
=> góc BEC = góc BDC 
mà 2 góc này cùng nhìn cung BC 
=> tgnt => B,C,D,E thuộc 1 đt 
2/ta có góc BFA =90 ( chắn nửa đt tâm O) 
=> BF vuông góc AF(1) 
góc AFC =90(chắn nửa đt tâm O') 
=>AF vuông góc CF(2) 
(1)(2) => BF // CF 
=> B, F,C thẳng hàng 
ta có : tg BEAF nt => góc EBA = EFA(3) 
tg ADCF nt => góc AFD = ACD(4) 
tg BEDC nt => góc EBD = ECD(5) 
từ (3)(4)(5)=> góc EFA =AFD 
=> FA là p/g EFD 

4 tháng 4 2018

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.