Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét ∆ vuông ABH và ∆ADH có :
AH chung
BH = HD
=> ∆ABH =∆ADH (2 cạnh góc vuông)
b) Xét ∆ABD ta có :
AH \(\perp\)BC
BH = HD
=> AH là trung trực
=> ∆ABD cân tại A
=> AB = AD
ABD = ADB
AH là phân giác BAD
=> BAH = DAH
Mà ADB = EDC ( đối đỉnh)
Xét ∆ ABH có :
ABH + BHA + BAH = 180°
=> BAH = 90° - ABH (1)
Xét ∆ DEC có :
DEC + ECD + CDE = 180°
=> EDC = 90° - EDC (2)
Mà EDC = BDA (cmt)
=> EDC = BDA = ABD (3)
Từ (1) (2) (3) => BAH = ECD (dpcm)
c) Xét ∆ABC có
BAC + ACB + ABC = 180°
=> ACB = 90° - ABC
Mà ECD = ABC (cmt)
=> ECD = BCA
Hay CB là phân giác ECA
a) Xét tam giác AHB (H=90*) va tam giác AHD (H=90*) co:
HB=HD ( gt)
AH chung
=> tam giác AHB=tam giác AHD
hok ngu toan mấy câu còn lại không biết làm
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: ΔABD cân tại A
=>góc ADH=góc ABH
mà góc ABH=góc HAC
nên góc ADH=góc HAC
ΔABD cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAD
=>góc BAH=góc DAH
mà góc BAH=góc ACB
nên góc DAH=góc ACB
c: Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
góc HDA=góc EDC
=>ΔDHA đồng dạng với ΔDEC
=>góc ECD=góc HAD
=>góc ECB=góc ACB
=>CB là phân giác của góc ACE
e: ΔBAD cân tại A
=>góc ADB<90 độ
=>góc ADC>90 độ
Xét ΔADC có góc ADC>90 độ
nên AC là cạnh lớn nhất
=>AC>CD
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
a, Xét Δ ABC, có :
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go)
=> \(3^2+4^2=BC^2\)
=> \(25=BC^2\)
=> BC = 5 (cm)
Xét Δ ABC vuông tại A, theo hệ thức lượng có :
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
=> \(\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}\)
=> AH = 2,4 cm
b, Xét Δ ABD, có :
HD = HB (gt)
AH là đường cao
=> Δ ABD cân
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
;
a) Sử dụng kết quả : CD là p/g của góc ECA đã chứng minh
Xét tam giác ACK có : CH là đường cao đông thời là đường p/g => tam giác ACK cân tại C
=> CH là đường trung trực của đoạn AK mà D thuộc CH
=> DA = DK (mọi điểm nằm trên đường trung trực của đoạn thẳng thì cách đều 2 đầu đoạn thẳng đó )
=> tam giác ADK cân tại D => góc ADH = HDK
mà góc ADH = ABH (do tam giác ADB cân tại A)
=> góc HDK = ABH mà 2 góc này ở vị trí SLT
=> KD //AB
b) Phải sửa lại đề là: AC > CD
Vì D thuộc đoạn HC nên CD < HC
mà tam giác AHC vuông tại H => HC < AC (cạnh góc vuông < cạnh huyền)
=> CD < HC < AC
vậy CD < AC
Trần Thị Loan cho mk hỏi chứng minh CD là tia phân giác góc ACE như thế nào ạ
a) Tam giác ABC vuông tại A => góc ACB + ABC = 90o (1)
Do AH vuông góc với BC => tam giác AHB vuông tạo H
=> góc BAH + ABC = 90o (2)
từ (1)(2) => góc ACB = BAH (3)
b) Tam giác ADB có AH là đường cao đồng thời là đường trung tuyến (do HD = HB)
=> tam giác ADB cân tại A => AH là phân giác của góc DAB
=> góc BAH = góc HAD (4)
Ta có: tam giác ADH vuông tại H => góc HAD + ADH = 90o
Tam giác CED vuông tại E => góc ECD + CDE = 90o
Mặt khác, góc ADH = CDE (do đối đỉnh)
nên góc HAD = ECD (5)
Từ (3)(4)(5) => góc ACB = ECD => CB là phân giác của góc ACE
k mk đi làm ơn
mk đang bị âm điểm