Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMNP có
\(\widehat{AMN}=\widehat{APN}=\widehat{PAM}=90^0\)
Do đó: AMNP là hình chữ nhật
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
\(\Leftrightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)
b: Ta có: MN//AC và \(MN=\dfrac{AC}{2}\)
mà P\(\in\)AC và \(AP=\dfrac{AC}{2}\)(P là trung điểm của AC
nên MN//AP và MN=AP
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của AC
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\)
mà N\(\in\)BC và \(BM=\dfrac{BC}{2}\)
nên MP//BN và MP=BN
Xét tứ giác AMNP có
MN//AP
MN=AP
Do đó: AMNP là hình bình hành
Xét tứ giác BMPN có
MP//BN
MP=BN
Do đó: BMPN là hình bình hành
c) Hình bình hành AMNP trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MAP}=90^0\\AM=AP\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{BAC}=90^0\\AB=AC\end{matrix}\right.\)
a: Xét ΔABC có
P là trung điểm của AC
N là trung điểm của BC
Do đó: PN là đường trung bình của ΔBAC
Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)
mà M\(\in\)AB và \(AM=\dfrac{AB}{2}\)
nên PN//AM và PN=AM
Xét tứ giác AMNP có
PN//AM
PN=AM
Do đó: AMNP là hình bình hành
mà \(\widehat{PAM}=90^0\)
nên AMNP là hình chữ nhật
a: Xét ΔCAB có CP/CA=CN/CB
nên PN//AB và PN=AB/2
=>PN//AM và PN=AM
=>AMNP là hình bình hành
mà góc PAM=90 độ
nên AMNP là hình chữ nhật
b: \(AC=\sqrt{10^2-8^2}=6\left(cm\right)\)
AH=6*8/10=4,8cm
Bài làm
a) Xét tam giác BAC có:
P là trung điểm AB
N là trung điểm BC
=> PN là đường trung bình.
=> PN // AC và PN = 1/2 AC
Mà AM = 1/2 AC => PN = AM
Xét tứ giác AMNP có:
PN // AC
=> Tứ giác AMNP là hình thang.
Mà PN = AM
=> Hình thang AMNP là hình bình hành.
Ta có: ^A = 90°
=> AMNP là hình chữ nhật.
b) Ta có: AB = 1/2 AC
Mà AM = 1/2AC
=> AB = AM
Mà PN = AM ( cmt )
=> AB = NP .
c) Xét tam giác CBQ vuông ở B có:
^C + ^BQC = 90° (1)
Xét tam giác BAQ vuông ở A có:
^QBA + ^BQC = 90° (2)
Từ (1) và (2) => ^C = ^QBA
Lại có: AB = AM ( cmt )
Mà AM = MC
=> AB = MC
Xét tam giác ABQ và tam giác MCN có:
^BAQ = ^CMN ( = 90° )
AB = MC ( cmt )
^C = ^QBA ( cmt )
=> Tam giác ABQ = tam giác MCN ( g.c.g )
=> NC = QB
Mà BN = NC ( Do N là trung điểm BC )
=> QB = BN
=> Tam giác BQN cân tại B
a) Xét tam giác ABC có : BN = CN
AP = PC
suy ra : NP là đường trung bình của tam giác ABC
suy ra : NP song song với AB và NP = AB/2
Xét tam giác ABC có : AM = BM ; BN = CN
suy ra MN là đường trung bình của tam giác ABC
suy ra MN song song với AC và MN = AC/2
Xét tứ giác AMNP có : MN song song với AP ( MN song song AC )
NP song song với MA ( NP song song AB )
suy ra : tứ giác AMNP là hbh
mà góc BAC = 90 độ
suy ra : hbh AMNP là hcn
b) Ta có : công thức tính diện tích hcn là : a.b ( trong đó a,b là chiều dài hai cạnh kề nhau của hcn )
suy ra : công thức tính diện tích hcn AMNP là :
SAMNP = MN.NP
Ta có : MN = AC/2
mà AC = 8
suy ra : MN = 8/2 = 4cm
Ta có : NP = AB/2
mà AB = 6
suy ra : NP = 6/2 = 3cm
suy ra : diện tích hcn AMNP = 4.3 = 12 (cm2)
c) phần c hình như sai rồi á bạn
d) Ta có : AMNP là hcn ( đã C/M ở phần a )
Để hcn AMNP là hình vuông
khi và chỉ khi : MA = MN
mà MA = BA/2
MN = CA/2
suy ra : để hcn nhật AMNP là hv thì AB = AC