K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

a) Chứng minh được ADCI là hình thoi.

b) Gọi AI Ç BN = G Þ là trọng tâm DABC.

Ta chứng minh DK = GI, lại có   D C = A I ⇒ D K D C = G I A I = 1 3

c) SADCI = 2SACI = SABC = 96cm2

a: Xét tứ giác AMIN có \(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)

nên AMIN là hình chữ nhật

b: IN=3cm

nên AM=3cm

IM=4cm

nên AN=4cm

Xét ΔABC có

I là trung điểm của BC

IM//AC

Do đó: M là trung điểm của AB

=>AB=6cm

Xét ΔABC có

I là trung điểm của BC

IN//AB

Do đó: N là trung điểm của AC

hay AC=8cm

\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: Xét tứ giác ADCI có 

N là trung điểm của AC

N là trung điểm của DI

Do đó: ADCI là hình bình hành

mà IA=IC

nên ADCI là hình thoi

25 tháng 12 2016

A B C I M N D K a , Tứ giác ANMI có : góc MAN = góc ANI = góc AMI = 90o nên là hình chữ nhật .

→ AI = MN

b, ΔABC vuông tại A có đường trung tuyến AI ứng với cạnh huyền nên :

AI = IC

→ ΔAIC cân tại I

→ Góc IAN = góc ICN

Xét ΔAIN và ΔCIN có :

Góc INA = Góc INC = 90o

AI = IC

Góc IAN = góc ICN

→ Δ AIN = Δ CIN ( cạnh huyền - góc nhọn )

→ AN = NC

Ta có : IN = ND

AN = NC

→ Tứ giác AICD là hình bình hành mà có hai đường chéo ID và AC vuông góc với nhau nên là hinhg thoi .

9 tháng 7 2017

a) Xét tứ giác AMIN có:

∠(MAN) = ∠(ANI) = ∠(IMA) = 90o

⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

⇒ NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202 ⇒ AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

⇒ H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.