Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.
a) Xét tứ giác AMIN có
\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0\), N∈AC, M∈AB)
\(\widehat{AMI}=90^0\)(IM⊥AB)
\(\widehat{ANI}=90^0\)(IN⊥AC)
Do đó: AMIN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: IN⊥AC(gt)
AB⊥AC(ΔBCA vuông tại A)
Do đó: IN//AB(Định lí 1 từ vuông góc tới song song)
Xét ΔABC có
I là trung điểm của BC(gt)
IN//AB(cmt)
Do đó: N là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Xét tứ giác AICD có
N là trung điểm của đường chéo DI(D và I đối xứng nhau qua N)
N là trung điểm của đường chéo AC(cmt)
Do đó: AICD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AICD có AC⊥DI(IN⊥AC, D∈IN)
nên AICD là hình thoi(Dấu hiệu nhận biết hình thoi)
a/ Xét t.g ABC có I là trung điểmBC ; IN // AB (cùng vuông góc vs AC)=> N là trung điểm AC
Xét tứ giác ADCI có
N là trđ AC
N là trđ DI
\(\widehat{ANI}=90^o\)
AC cắt DI tại N
=> ADCI là hình htoi
b/ Gọi O là giao điểm AI và BN
=> O là trọng tâm t/g ABC
=> OI = 1/3 AI = 1/2 DCt/g OIN= t/gKDN (g.c.g)
=> KD = IO = 1/3DC=> ĐPcm
c/ Theo Pythagoras ; AC = 16 cm
Cí IN = 1/2 AB ; IN = 1/2 ID=> ID = AB = 12
Có \(S_{ADCI}=\dfrac{1}{2}.ID.AC=8.12=96\left(cm^2\right)\)
a: Xét tứ giác AMIN có \(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)
nên AMIN là hình chữ nhật
b: IN=3cm
nên AM=3cm
IM=4cm
nên AN=4cm
Xét ΔABC có
I là trung điểm của BC
IM//AC
Do đó: M là trung điểm của AB
=>AB=6cm
Xét ΔABC có
I là trung điểm của BC
IN//AB
Do đó: N là trung điểm của AC
hay AC=8cm
\(S_{ABC}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
c: Xét tứ giác ADCI có
N là trung điểm của AC
N là trung điểm của DI
Do đó: ADCI là hình bình hành
mà IA=IC
nên ADCI là hình thoi
a: Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)
Do đó:AMIN là hình chữ nhật
b: Xét tứ giác ADCI có
N là trung điểm của AC
N là trung điểm của DI
Do đó: ADCI là hình bình hành
mà IA=IC
nên ADCI là hình thoi
c: AB=15cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=15\cdot10=150\left(cm^2\right)\)
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh