Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AO là đường trung tuyến của tam giác ABC :
=) OB=OC =) O là trung điểm của BC
Và OD=OA =) O là trung điểm của AD
=) 2 đường chéo AD và BC cắt nhau tại trung điểm O
=) Tứ giác ABDC là hình bình hành (1)
Do AB \(\perp\)AC tại A =) \(\widehat{BAC}\)= 900 (2)
Từ (1) và (2) =) ABDC là hình chữ nhật
b) Do BH\(\perp\)AD
CK\(\perp\)AD
=) BH // CK (*)
Do BD // AC
=) \(\widehat{DAC}\)=\(\widehat{B\text{D}A}\)(2 góc so le trong)
Xét tam giác AKC ( \(\widehat{AKC}\)= 900) và tam giác DHB (\(\widehat{DHB}\)= 900) có :
AC=BD (tính chất hính chữ nhật)
\(\widehat{DAC}\)=\(\widehat{B\text{D}A}\)( chứng minh trên )
=) Tam giác AKC= Tam giác DHB ( cạch huyền - góc nhọn )
CK=BH (2 cạch tương ứng ) (**)
Tứ (*) và (**) =) Tứ giác BHCK là hình bình hành
=) BK // CH
a: Xét tứ giác ABDC có
O là trung điểm của AD
O là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: Xét ΔOHB vuông tại H và ΔOKC vuông tại K có
OB=OC
\(\widehat{HOB}=\widehat{KOC}\)
Do đoΔOHB=ΔOKC
Suyy ra: HB=KC
Xét tứ giác BHCK có
BH//CK
BH=CK
Do đo: BHCK là hình bình hành
Suy ra: BK//CH
A B C D N M K H
a) Ta có AO là trung tuyến nên OC = OB.
Lại có OD = OA nên ABDC là hình bình hành ( Hai đường chéo cắt nhau tại trung điểm mỗi đường)
b) Ta thấy \(\Delta CKO=\Delta BHO\) ( Cạnh huyền - góc nhọn) nên CK = BH ( Hai cạnh tương ứng)
Mà CK và BH lại cùng vuông góc với AD nên chúng song song.
Vậy thì tứ giác BHCK là hình bình hành ( Cặp cạnh đối song song và bằng nhau)
c) Do CN // BM; AC // BD nên \(\widehat{ACN}=\widehat{DBM}\Rightarrow\Delta ACN=\Delta DBM\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow CN=BM\)
Tứ giác CMBN có cặp cạnh đối song song và bằng nhau nên là hình bình hành.
Vậy BC giao MN tại trung điểm mỗi đường. O là trung điểm BC nên O cũng là trung điểm MN. Vậy M, N, O thẳng hàng.
@Toshiro Kiyoshi
-_- Từ đời nhà trần rồi anh