Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>AH=DE và AH cắt DE tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và DE
b: ΔHDB vuông tại D có DI là trung tuyến
nên DI=HI=IB
Xét ΔIDO và ΔIHO có
ID=IH
DO=HO
IO chung
=>ΔIHO=ΔIDO
c: góc IDE=góc IDH+góc EDH
=góc IHD+góc EAH
=góc HAC+góc HCA=90 độ
=>ID vuông góc DE
góc KED=góc KEH+góc DEH
=góc KHE+góc DAH
=góc HAB+góc HBA=90 độ
=>KE vuông góc ED
=>ID//KE
=>DIKE là hình thang
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: góc MED=góc MEH+góc DEH
=góc MHE+góc DAH
=góc HBA+góc HAB=90 độ
Do E là chân đường phân giác góc D, theo định lý phân giác:
\(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)
Ta có:
\(\left\{{}\begin{matrix}\widehat{BDE}+\widehat{EDF}+\widehat{FDC}=180^0\\\widehat{EDF}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDC}=90^0\) (1)
\(\left\{{}\begin{matrix}\widehat{FDA}+\widehat{ADE}=90^0\left(gt\right)\\\widehat{ADE}=\widehat{BDE}\left(\text{DE là phân giác góc D}\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDA}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{FDA}=\widehat{FDC}\Rightarrow DF\) là phân giác góc \(\widehat{ADC}\)
\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\) (định lý phân giác)
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{DB}{DC}.\dfrac{DC}{DA}=1\) (đpcm)
a: Xét ΔAHD vuông tại H và ΔAED vuông tại E có
AD chung
\(\widehat{HAD}=\widehat{EAD}\)
Do đó: ΔAHD=ΔAED
Suy ra: DH=DE
b: Ta có: ΔAED=ΔAHD
nên AE=AH
Xét ΔDHK vuông tại H và ΔDEC vuông tại E có
DH=DE
\(\widehat{HDK}=\widehat{EDC}\)
Do đó: ΔDHK=ΔDEC
Suy ra: HK=EC
Ta có: AH+HK=AK
AE+EC=AC
mà AH=AE
và HK=EC
nên AK=AC
Xét ΔAKC có AK=AC
nên ΔAKC cân tại A
c: Ta có: ΔDHK=ΔDEC
nên DK=DC
mà EC<DC
nên EC<DK