Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)
Do đó:AMIN là hình chữ nhật
b: Xét tứ giác ADCI có
N là trung điểm của AC
N là trung điểm của DI
Do đó: ADCI là hình bình hành
mà IA=IC
nên ADCI là hình thoi
c: AB=15cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=15\cdot10=150\left(cm^2\right)\)
a, Vì \(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\) nên AMIN là hcn
b, Vì AI là trung tuyến ứng ch BC nên \(AI=\dfrac{1}{2}BC=\dfrac{25}{2}\left(cm\right)\)
Áp dụng PTG: \(AB=\sqrt{BC^2-AC^2}=15\left(cm\right)\)
Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=150\left(cm^2\right)\)
a)sét tứ giác AMIN có
góc INA=góc IMA=900
=> tứ giác AMIN là hình chữ nhật
b)sét tam giác ABC vuông góc tại A
ta có:AI=1/2 BC(đường trung tuyến tam giác ngược)
=>AI=BC/2=25/2=12,5(cm)
ta có ab^2=bc^2-ac^2(định lí py-ta-go)
=25^2-20^2=>ab==15(cm)
vậy Sabc=1/2ab.ac=1/215.20=150(cm)2 xem cách làm cua minh dk
TK
a) Xét tứ giác AMIN có:
∠(MAN) = ∠(ANI) = ∠(IMA) = 90o
⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).
b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2
do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến
⇒ NA = NC.
Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành
Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.
c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)
= 252 – 202 ⇒ AB = √225 = 15 (cm)
Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)
d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC
⇒ H là trung điểm của CK hay KH = HC (1)
Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)
Do đó K là trung điểm của DH hay DK = KH (2)
Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.
a: Xét tứ giác AMIN có
\(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)
Do đó: AMIN là hình chữ nhật
a: BC=10cm
=>AI=5cm
b: Xét tứ giác AMIN có
góc AMI=góc ANI=góc MAN=90 độ
nên AMIN là hình chữ nhật
c: Xét ΔABC có
I là trung điểm của BC
IN//AB
Do đó: N là trung điểm của AC
Xét tứ giác ADCI có
N là trung điểm chung của AC và DI
IA=IC
Do đó: ADCI là hình thoi
a: Xét tứ giác AMIN có
AM//IN
AN//IM
Do đó: AMIN là hình bình hành
a) Xét tứ giác AMIN có :
\(MI//AN\left(\perp AM\right)\)
\(MA//IN\left(\perp AN\right)\)
\(\Rightarrow\)Tứ giác AMIN là hình bình hành
mà \(\widehat{A}=90^o\)
\(\Rightarrow\)Tứ giác AMIN là hình chữ nhật
b) Ta có : AM // NI (cmt)
\(\Rightarrow MB//NI\left(1\right)\)
Xét \(\Delta ACB\)có :
BI = IC (gt)
AM // NI (cmt)
\(\Rightarrow\)NI là đường trunbg bình của \(\Delta ACB\)
\(\Rightarrow NI=\frac{1}{2}AB\left(2\right)\)
mà tứ giác AMIN là hình chữ nhật
\(\Rightarrow AM=NI\left(3\right)\)
Từ (2) và (3) \(\Rightarrow AM=\frac{1}{2}AB\)
\(\Rightarrow\)M là trung diểm của AB
\(\Rightarrow AM=MB\left(4\right)\)
Từ (2) và (4) \(\Rightarrow BM=NI\left(5\right)\)
Từ (1) và (5) \(\Rightarrow\)tứ giác NMBI là hình bình hành
c) Xét \(\Delta ABC\)có :
BI = IC (gt)
BM = MA (cmt)
\(\Rightarrow\)MI là dường trung bình của \(\Delta ABC\)
\(\Rightarrow MI=\frac{1}{2}AC\left(6\right)\)
Ta có : NI là đường trung binh của \(\Delta ACB\)(cmt)
\(\Rightarrow AN=NC\)
\(\Rightarrow NC=\frac{1}{2}AC\left(7\right)\)
Từ (6) và (7) \(\Rightarrow MI=NC=5\left(cm\right)\)
Vậy NC = 5cm