Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lý pitago vào tam giác vuông ABC ( gt )
⇒Bc=10(cm)⇒Bc=10(cm)
Tacó: DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3.DC/DA=BC/BA=10/6=5/3⇒DC/DC+DA=5/5+3⇒DC/8=58⇒DC=8.58=5(cm)⇒DC/8=5/8⇒DC=8.5/8=5(cm)
⇒AD=AC−DC=8−5=3(cm)
A B D E C H
a) \(\Delta ABH,\Delta CBA\)có \(\widehat{ABC}\)chung ;\(\widehat{AHB}=\widehat{CAB}=90^0\)nên \(\Delta ABH~\Delta CBA\left(g-g\right)\)
b) Từ câu a,ta có \(\frac{BA}{BC}=\frac{BH}{BA}\)mà \(\frac{BA}{BC}=\frac{EA}{EC}\)(tính chất đường phân giác BE của \(\Delta ABC\))\(\Rightarrow\frac{EA}{EC}=\frac{BH}{AB}\)
c) Ta có : \(\frac{BA}{BC}=\frac{BH}{BA}\Rightarrow BH=\frac{BA^2}{BC}=\frac{25}{3}\)(cm)
\(\Delta AHB\)vuông tại H có \(AH=\sqrt{AB^2-BH^2}=\sqrt{100-\frac{625}{9}}=\frac{5\sqrt{11}}{3}\)(cm) (định lí Pi-ta-go)
Ta có : \(\frac{AD}{DH}=\frac{AB}{BH}\)(tính chất đường phân giác BD của \(\Delta ABH\))
\(\Rightarrow\frac{AD}{10}=\frac{DH}{\frac{25}{3}}=\frac{AD+DH}{10+\frac{25}{3}}=\frac{5\sqrt{11}}{3}:\frac{55}{3}=\frac{1}{\sqrt{11}}\)(cm) (tính chất dãy tỉ số bằng nhau)
\(\Rightarrow AD=\frac{10}{\sqrt{11}}\left(cm\right);DH=\frac{25}{3\sqrt{11}}\left(cm\right)\)
Ái chà thời này toán học cao siêu quá còn có trường hợp bằng nhau của tam giác là góc góc :v
Tự vẽ hình nha
a) xét tam giác HAB và tam giác ABC
góc AHB = góc ABC
góc CAB : chung
Suy ra : tam giác AHB ~ tam giác ABC ( g-g )
b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :
AC2 + AB2 = BC2
162 + 122 = BC2
400 = BC2
=> BC = \(\sqrt{400}\)= 20 ( cm )
ta có tam giác HAB ~ tam giác ABC ( câu a )
=> \(\frac{AH}{AC}=\frac{AB}{BC}hay\frac{AH}{16}=\frac{12}{20}\)
=> AH = \(\frac{12.16}{20}=9,6\)( cm )
Độ dài cạnh BH là
Áp dụng định lí py - ta - go vào tam giác HBA ta được :
AH2 + BH2 = AB2
BH2 = AB2 - AH2
BH2 = 122 - 9,62
BH2 = 51,84
=> BH = \(\sqrt{51,84}\) = 7,2 ( cm )
c) Vì AD là đường phân giác của tam giác ABC nên :
\(\frac{AB}{BD}=\frac{AC}{CD}\Leftrightarrow\frac{AB}{BC-CD}=\frac{AC}{CD}\)
<=> \(\frac{AB.CD}{CD\left(BC-CD\right)}=\frac{AC\left(BC-CD\right)}{CD\left(BC-CD\right)}\)
<=> AB.CD = AC(BC - CD)
hay 12CD = 16.20 - 16CD
<=> 12CD+ 16CD = 320
<=> 28CD = 320
<=> CD = \(\frac{320}{28}\approx11.43\left(cm\right)\)
Độ dài cạnh BD là :
BD = BC - CD
BD = 20 - \(\frac{320}{28}\)\(\approx\) 8,57 ( cm )
Cho hỏi đồng dạng là sao bạn???Tớ mới học lớp 7 thôi,nên chưa biết ^^
a) C/M ΔABH ∼ ΔCBA, ΔBAM ∼ ΔBCD
Xét ΔABH và ΔCBA, ta có:
\(\widehat{AHB}=\widehat{CAB}=90^0\left(gt\right)\)
\(\widehat{B}:chung\)
Vậy ...................................
Xét ΔBAM và ΔBCD, ta có:
\(\widehat{ABM}=\widehat{CBD}\) (BD phân giác)
\(\widehat{BAM}=\widehat{BCD}\) ( cùng phụ với \(\widehat{HAC}\))
Vậy ......................................
b) C/M \(\frac{AB}{AD}=\frac{CB}{CD}\) và AB.AM = BC.HM
Ta có BD phân giác \(\widehat{B}\) (gt)
⇒ \(\frac{AB}{AD}=\frac{CB}{CD}\) (T/C đường phân giác)
Ta có BM phân giác \(\widehat{B}\) (do M∈BD)
⇒ \(\frac{AM}{HM}=\frac{AB}{BH}\) (T/C đường phân giác)
Mà \(\frac{AB}{BH}=\frac{BC}{AB}\) (do ΔABH ∼ ΔCBA)
⇒ \(\frac{AM}{HM}=\frac{BC}{AB}\)
Vậy AB.AM = BC.HH
TẠM THỜI MÌNH GIẢI a VỚI b NHA, c GIÀI SAU
Từ câu b ta có:
\(AB.AM=BC.HM\Rightarrow\frac{AM}{HM}=\frac{BC}{AB}=3\Rightarrow AM=3HM\)
\(\Rightarrow\frac{AH}{HM}=\frac{AM+HM}{HM}=\frac{4HM}{HM}=4\Rightarrow AH=4HM\)
Lại có:
\(\Delta ABH\sim\Delta CAB\Rightarrow\frac{BH}{AB}=\frac{AB}{BC}\Rightarrow BH=\frac{AB^2}{BC}=\frac{AB^2}{3AB}=\frac{AB}{3}\)
\(AB=\frac{1}{3}BC\Rightarrow BH=\frac{1}{9}BC\Rightarrow BC=9BH\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.4HM.9BH=36.\left(\frac{1}{2}HM.BH\right)=36.S_{BHM}\)