K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1

A B C K D H I

a/ Ta có 

\(\widehat{ADI}=\widehat{AKI}=90^o\)

=> D và K cùng nhìn AI dưới 1 góc \(90^o\) => D; K thuộc đường tròn đường kính AI => A; D; K; I cùng thuộc một đường tròn

b/ Xét tg vuông DAH và tg vuông ABC có

\(\widehat{DAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg DAH đồng dạng với ABC (g.g.g)

 

5 tháng 2 2020

Gọi AM cắt DE tại I 

Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)

\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)

Do \(\Delta AID\)vuông tại I suy ra 

\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)

\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)

\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)

Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra 

\(\widehat{MFC}=\widehat{ACF}\)

Mà 

5 tháng 2 2020

\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF

Mà MB=MC suy ra \(\Delta BFC\) có  FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\)  \(\Delta BFC\)vuông tại F hay  \(BF\perp CF\left(đpcm\right)\)

28 tháng 2 2023

hình k co à

a: Xét tứ giác CDHF có

góc CDF=góc CHF=90 độ

=>CDHF là tứ giác nội tiếp

b: Xét ΔBCA vuông tại C và ΔCDE vuông tại D có

góc CBA=góc DCE

=>ΔBCA đồng dạng với ΔCDE

=>DE/CA=CE/AB

=>DE*AB=CE*CA

BD là phân giác

=>DA/DC=BA/BC

mà CE/CD=BA/BC

nên DA=CE

=>DE*AB=AC*DA

17 tháng 2 2022

Giup mik voi mn

 

17 tháng 3 2023

Giải