\(60^0\). Tia phân giác \(\wideha...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2017

bn ơi bài này làm hơi dài. mk chỉ gợi ý đc thôi nhé;

xét tam giác AKE và KEB theo trường hợp gcg. bn tính từng góc trong tam giác đó ra nhé

B) chi 2 cạnh CE=ED thì xét tam gác ACE và EBD; AE=EB 

chúc bn làm đc bài nhé. kết bn với mk nhé

a: Xét ΔACE vuông tạiC và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE

Do đó: ΔACE=ΔAKE

Suy ra: AC=AK và EC=EK

=>AE là đường trung trực của CK

hay AE\(\perp\)CK

b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)

nên ΔEAB cân tại E

mà EK là đường cao

nên K là trung điểm của AB

c: AC=AK=KB 

mà EB>KB

nên EB>AC

19 tháng 4 2019

BTS là cục cứt chó j , nó đéo xứng làm cục cứt của the coconut tao

con kia là đồ giả mạo 

Mà ông Duy có j hay đâu mà bọn m giả lắm thế

3 tháng 5 2018

A C B E D K 1 2 a) * Xét ΔACE vuông tại C và ΔAKE vuông tại K có:

AE là cạnh huyền chung

\(\widehat{A_1}=\widehat{A_2}\) (vì AE là phân giác của \(\widehat{A}\) )

Vậy: ΔACE =Δ AKE (cạnh huyền-góc nhọn)

⇒ *AC =AK (2 cạnh tương ứng)

→ A ∈ đường trung trực của CK

* CE = KE (2 cạnh tương ứng)

→ E ∈ đường trung trực của CK

Vậy AE là đường trung trực của CK

=> AE⊥CK

b) Ta có: \(\widehat{A_1}=\widehat{A_2}=\dfrac{\widehat{A}}{2}=\dfrac{60^0}{2}=30^0\) (1)

Lại có: ΔABC vuông tại A có \(\widehat{A}=60^0\Rightarrow\widehat{ABC}=30^0\) (2)

Từ (1) và (2) => \(\widehat{A_2}=\widehat{ABC}\)

⇒Δ ABE cân tại E

mà EK ⊥AB => EK là đường cao của Δ ABE

=> EK cũng là đường trung tuyến của ΔABE

=> KA = KB

c) * ΔACE có: AE là cạnh huyền nên AE > AC

mà AE = EB ( vì ΔABE cân tại E)

nên: EB > AC

d) * ΔAEB có:

KE ⊥ AB => KE là đường cao của ΔAEB

AE ⊥ BD => BD là đường cao của ΔAEB

AC ⊥ EB => AC là đường cao của ΔAEB

Vậy: KE, BD, AC là 3 đường cao của ΔAEB

Do đó: KE, BD, AC cùng đi qua một điểm

(Câu d mình ko chắc lắm!!)