Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30o
⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥K và có ˆEAK=30o)
Tương tự, có ˆEBK=30o (vì ΔABC⊥C và có ˆA=60)
ˆKEB=60o
Xét hai tam giác vuông ΔAEK và ΔKEB có:
ˆAEK=ˆKEB=60o (cmt)
EKEK chung
ˆEKB=ˆEKA=90o
⇒ΔAEK=ΔBEK (g.c.g)
⇒AK=KB (hai cạnh tương ứng)
b) Có ˆDAB=30o (cmt) ⇒ˆABD=60o (ΔADB⊥D)
Xét hai tam giác vuông ΔABC và ΔABD có:
ABAB chung
ˆBAC=ˆABD=60o ( gt + cmt)
ˆDAB=ˆABC=30o (g.c.g)
⇒ΔABC=ΔABD
⇒AD=BC (hai cạnh tương ứng)
a) Ta có AEAE là phân giác ˆBAC⇒ˆEAK=30oBAC^⇒EAK^=30o
⇒ˆAEK=60o⇒AEK^=60o (vì ΔAEK⊥KΔAEK⊥K và có ˆEAK=30oEAK^=30o)
Tương tự, có ˆEBK=30oEBK^=30o (vì ΔABC⊥CΔABC⊥C và có ˆA=60oA^=60o)
ˆKEB=60oKEB^=60o
Xét hai tam giác vuông ΔAEKΔAEK và ΔKEBΔKEB có:
ˆAEK=ˆKEB=60oAEK^=KEB^=60o (cmt)
EKEK chung
ˆEKB=ˆEKA=90oEKB^=EKA^=90o
⇒ΔAEK=ΔBEK⇒ΔAEK=ΔBEK (g.c.g)
⇒AK=KB⇒AK=KB (hai cạnh tương ứng)
b) Có ˆDAB=30oDAB^=30o (cmt) ⇒ˆABD=60o⇒ABD^=60o (ΔADB⊥DΔADB⊥D)
Xét hai tam giác vuông ΔABCΔABC và ΔABDΔABD có:
ABAB chung
ˆBAC=ˆABD=60oBAC^=ABD^=60o ( gt + cmt)
ˆDAB=ˆABC=30oDAB^=ABC^=30o (g.c.g)
⇒ΔABC=ΔABD⇒ΔABC=ΔABD
⇒AD=BC⇒AD=BC (hai cạnh tương ứng)
B) Ta có : góc CBA + góc BAC = 90 độ [ tam giác ABC vuông tại C ]
\Rightarrow góc CBA + 60 độ = 90 độ - 30 độ = 30 độ
mà góc KAE = 30 độ
Vậy góc CBA = góc KAE = 90 độ
Em tham khảo tại đây nhé.
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
b) Xét tam giác vuông ACB và tam giác vuông BDA có:
Cạnh AB chung
\(\widehat{ABC}=\widehat{BAD}\left(=30^o\right)\)
\(\Rightarrow\Delta ACB=\Delta BDA\) (Cạnh huyền góc nhọn)
\(\Rightarrow AD=BC\)
a)Vì AE là phân giác của góc BAC nên góc EAB=góc EBA
=> tg EAB cân tại E mà có EK là đg cao nên EK đồng thời là trung tuyên nên AK=BK
b)Xét tg ABC vuông tại C và tg BAD vuông tại D có
AB chung
ABC=BAD=30 độ
=> tg BAD=tg ABC(ch-gn)
=>AD=BC
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK và EC=EK
=>AE là đường trung trực của CK
=>AD là đường trung trực của CK
b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB