Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi H là trung điểm BC. Ta có AH vuông góc vs BC ( Tính chất đường trung tuyến trong tam giác cân )
BD = CE => HD = HE => AH cùng là trung tuyến trong tam giác ADE. AH vuông góc vs BC => ADE cân (Trung tuyến cũng là dg cao)
b) Câu b => M trung vs H. AM là phân giác cũng là tình chất tam giác cân. Còn nếu muốn cm cụ thể thì.
Xét 2 tam giác ADM và tam giác AEM. Ta có AM là cạnh chung. MD = ME (M trung điểm DE). AE = AD Tam giác cân => 2 tam giác = nhau => DPCM
c) Xét 2 tam giác EKC và tam giác DHB vuông tại K và H
Ta có: EC = DB
Góc E = góc D => 2 tam giác = nhau ( Cạnh huyền góc nhọn)
=> BH = CK
a) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét tam giác ABD và tam giác ACE có:
\(AB=AC\)(tam giác ABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow AD=AE\Rightarrow\Delta ADE\) cân tại A
b) Ta có: \(BM=MC\) (M là trung điểm BC)
\(BD=CE\left(gt\right)\)
\(\Rightarrow BM+BD=MC+CE\Rightarrow MD=ME\)
=> M là trung điểm của DE
Xét tam giác ADE vuông tại A có
AM là đường trung tuyến (M là trung điểm DE)
=> AM là tia phân giác \(\widehat{DAE}\)
Và AM là đường trung trực ΔADE => AM⊥DE
c) Xét tam giác BHD vuông tại H và tam giác CKE vuông tại K có
\(\widehat{HDB}=\widehat{KEC}\)( Tam giác ADE cân tại A)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta BHD=\Delta CKE\left(ch-gn\right)\)
=> BH=CK(2 cạnh tương ứng)
d) Ta có: AD=AE( tam giác ADE cân tại A)
DH=KE( tam giác BHD = tam giác CKE)
=> AD-DH=AE-KE
=> AH=AK
=> Tam giác AHK cân tại A
\(\Rightarrow\widehat{AHK}=\dfrac{180^0-\widehat{BAC}}{2}\)
Mà \(\widehat{ADE}=\dfrac{180^0-\widehat{BAC}}{2}\) (tam giác AADE cân tại A)
\(\Rightarrow\widehat{AHK}=\widehat{ADE}\)
Mà 2 góc này là 2 góc đồng vị
=> HK//DE => HK//BC
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(15^2=9^2+12^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔMHC và ΔMKB có
MH=MK(gt)
\(\widehat{CMH}=\widehat{BMK}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔMHC=ΔMKB(c-g-c)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Bài 1:
a: Ta có: ΔBKC vuông tại K
mà KM là đường trung tuyến
nên KM=BC/2(1)
Ta có: ΔBHC vuông tại H
mà HM là đường trung tuyến
nên HM=BC/2(2)
Từ (1)và (2) suy ra MH=MK
hay ΔMHK cân tại M
b: Kẻ MN vuông góc với HK
=>N là trung điểm của HK
Xét hình thang CBDE có
M là trung điểm của BC
MN//DB//EC
DO đó: N là trung điểm của DE
=>DK=HE
a) Tứ giác BHCKBHCK có 2 đường chéo HKHK và BCBC cắt nhau tại trung điểm MM của mỗi đường
Do đó tứ giác BHCKBHCK là hình bình hành
b) Tứ giác BHCKBHCK là hình bình hành
⇒BK∥CH⇒BK∥CH
Mà CH⊥ABCH⊥AB
⇒BK⊥AB⇒BK⊥AB (đpcm)
c) Gọi J=BC∩HIJ=BC∩HI
Xét ΔBHIΔBHI có BJBJ vừa là đường trung tuyến, vừa là đường cao nên ΔBHIΔBHI cân đỉnh B
⇒BJ⇒BJ là đường phân giác của ˆHBIHBI^
⇒ˆIBC=ˆHBC⇒IBC^=HBC^
mà ˆHBC=ˆKCBHBC^=KCB^ (hai góc ở vị trí so le trong do BH//CK)
Từ 2 điều trên ⇒ˆIBC=ˆKCB⇒IBC^=KCB^ (*)
ΔHIKΔHIK có JMJM là đường trung bình của tam giác, nên JM//IKJM//IK
Hay BC//IK⇒BIKCBC//IK⇒BIKC là hình thang (**)
Từ (*) và (**) suy ra BIKCBIKC là hình thang cân.
d) Tứ giác GHCKGHCK có GK∥HCGK∥HC
Do đó GHCKGHCK là hình thang
Để GHCKGHCK là hình thang cân thì ˆGHC=ˆKCHGHC^=KCH^
mà ˆKCH=ˆHBKKCH^=HBK^ (hai góc cùng bù ˆBHCBHC^ do BHCKBHCK là hình bình hành)
Từ hai điều trên ⇒ˆGHC=ˆHBK⇒GHC^=HBK^
ΔHJC:ˆHCJ=90o−ˆGHCΔHJC:HCJ^=90o−GHC^ (tổng ba góc trong tam giác bằng 180o180o)
ˆABH=ˆABK−ˆHBK=90o−ˆHBKABH^=ABK^−HBK^=90o−HBK^ (BK⊥ABBK⊥AB)
Từ 3 điều trên suy ra ˆHCJ=ˆABHHCJ^=ABH^
Mà ΔBCF:ˆFBC=90o−ˆHCJΔBCF:FBC^=90o−HCJ^
ΔABE:ˆEAB=90o−ˆABHΔABE:EAB^=90o−ABH^
Từ 3 điều trên ⇒ˆFBC=ˆEAB⇒FBC^=EAB^
hay ˆCBA=ˆCABCBA^=CAB^
⇒ΔABC⇒ΔABC cân đỉnh CC
ΔABCΔABC cân đỉnh CC thì GHCKGHCK là hình thang cân.
+ Xét tg vuông ABC có
^ABH=^ACB (cùng phụ với ^BAC)
+ Trên tia đối của tia BH lấy điểm H' sao cho BH'=BH
Trong tg HCH' có BH=BH'; BE//CH' => BE là đường trung bình => EH=EC
Từ B Kẻ đường thẳng // CH' cắt AC tại E, Kéo dài tia AM cắt BE tại L
+ Xét tam giác vuông ABH và tam giác vuông BCH có ^ABH = ^ BCH (cmt) => tg ABH đồng dạng tg BCH
=>\(\frac{AB}{BC}=\frac{BH}{CH}=\frac{2BM}{2CE}=\frac{BM}{CE}\)
+ Xét tg ABM và tg BCE có
\(\frac{AB}{BC}=\frac{BM}{CE}\) (cmt) và ^ABH = ^BCH => tam giác ABM và tam giác BCE đồng dạng
=> ^AMB = ^BEC => ^AMH = ^BEH (1)
+ Trong tg vuông AMH có
^ MAH + ^AMH = 90o (2)
Từ (1) và (2) => ^MAH + ^BEH = 90o
+ Xét tg ALE có ^MAH + ^BEH = 90o => ^ALE = 90o => AL vuông góc với BE
Mà BE//CH'
=> AL vuông góc với CH' (*)
+ Xét tứ giác HKH'C có
BH=BH'
BK=BC
=> HKH'C là hình bình hành => KH//CH' (**)
Từ (*) và (**) => AL vuông góc KH hay AM vuông góc KH (dpcm)