Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta BDF\)và \(\Delta EDC\) có:
\(\widehat{BDF}=\widehat{EDC}=90^0\)
\(\widehat{BFD}=\widehat{ECD}\) (DO CÙNG PHỤ VỚI GÓC ABC )
Suy ra: \(\Delta BDF~\Delta EDC\)
\(\Rightarrow\)\(\frac{BD}{ED}=\frac{DF}{DC}\)
\(\Rightarrow\)\(BD.DC=ED.FD\)
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Sửa đề: vuônggóc BC, cắt AC tại H
Xet ΔCDH vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDH đồng dạng với ΔCAB
c: BD/DC=AB/AC=4/3
a: Xét ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: góc EDB+góc EAB=180 độ
=>EABD nội tiếp
góc DEB=góc DAB
góc DBE=góc DAC
=>góc DEB=góc DBE
=>DB=DE
a: Xét ΔABC vuông tại A và ΔDMC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDMC
=>AB/DM=BC/MC=AC/DC
=>6/DM=10/MC=8/3
=>DM=6:8/3=2,25cm và MC=10:8/3=10*3/8=30/8=3,75cm
b: Xét ΔABC vuông tại A và ΔMBE vuông tại M có
góc B chung
=>ΔABC đồng dạng với ΔMBE
=>BA/BM=BC/BE
=>BA*BE=BM*BC
a: Xet ΔCED vuông tại E và ΔCAB vuông tại A có
góc C chung
=>ΔCED đồng dạng với ΔCAB
b: ΔCAB có DE//AB
nên CD/CB=DE/AB
=>CD/CE=CB/AB=15/9=5/3
c: AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=15/7
=>BD=45/7cm
=>BD/BC=3/7
=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot9\cdot12=108\cdot\dfrac{3}{14}=54\cdot\dfrac{3}{7}=\dfrac{162}{7}\left(cm^2\right)\)
Lời giải:
a) Xét tam giác $ABC$ và $DEC$ có:
$\widehat{C}$ chung
$\widehat{BAC}=\widehat{EDC}=90^0$
$\Rightarrow \triangle ABC\sim \triangle DEC$ (g.g)
b) Xét tam giác $DEC$ và $DBF$ có:
$\widehat{EDC}=\widehat{BDF}=90^0$
$\widehat{DEC}=\widehat{DBF}(=90^0-\widehat{C})$
$\Rightarrow \triangle DEC\sim \triangle DBF$ (g.g)
$\Rightarrow \frac{DE}{DC}=\frac{DB}{DF}$
$\Rightarrow DE.DF=DB.DC$ (đpcm)
Hình vẽ: