K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

Ta có hình vẽ:

A F B C D E a/ Trong tam giác ABC có:

\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=1800 (tổng 3 góc của tam giác)

900 + 600 + \(\widehat{C}\) = 1800

=> \(\widehat{C}\) = 1800 - 900 - 600 = 300

Ta có: \(\widehat{B}\)=600, BD là phân giác góc B

=> \(\widehat{ABD}\)=\(\widehat{EBD}\)=300

b/ Xét tam giác ABD và tam giác EBD có:

BA = BE (GT)

\(\widehat{ABD}\)=\(\widehat{EBD}\) (GT)

BD : cạnh chung

Vậy tam giác ABD = tam giác EBD (c.g.c)

=> DA = DE (2 cạnh tương ứng)

c/ Xét tam giác BAD và tam giác FAD có:

AD: cạnh chung

AB = AF (GT)

\(\widehat{BAD}\)=\(\widehat{FAD}\) = 900

Vậy tam giác BAD = tam giác FAD (c.g.c)

=> tam giác BAD = tam giác FAD = EBD

Trong tam giác ABD có:

\(\widehat{BAD}\)+\(\widehat{ABD}\)+\(\widehat{BDA}\) = 1800

900 + 300 + \(\widehat{BDA}\) = 1800

=> \(\widehat{BDA}\) = 600

Vì tam giác BAD = tam giác FAD = tam giác EBD

nên \(\widehat{FDA}\)=\(\widehat{ADB}\)=\(\widehat{BDE}\)=600 (các góc tương ứng)

Ta có: \(\widehat{FDA}\)+\(\widehat{ADB}\)+\(\widehat{BDE}\)=600+600+600=1800

=> \(\widehat{FDE}\)=1800

hay E,D,F thẳng hàng (đpcm)

29 tháng 11 2016

dài quá trời OMG

 

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

b: Ta có: ΔBAD=ΔBED

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

c: Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

AD=ED

AF=EC

Do đó: ΔADF=ΔEDC

Suy ra: \(\widehat{ADF}=\widehat{EDC}\)

=>\(\widehat{ADF}+\widehat{ADE}=180^0\)

=>E,F,D thẳng hàng

27 tháng 11 2016

B C D A E F

a) Xét ΔADB và ΔEDB có:

BA = BE ( giả thiết )

Góc ABD = EBD ( BD là tia phân giác của góc ABE )

BD cạnh chung.

=> ΔADB = ΔEDB ( c.g.c )

=> DA = DE ( 2 cạnh tương ứng )

b) Vì ΔADB = ΔEDB nên góc DAB = DEB = 90 độ ( 2 góc tương ứng).

27 tháng 11 2016

Mk vẽ hình ko đc đẹp cho lắm, thông cảm nha!

6 tháng 12 2016

tag chơi thôi biết làm rồi

\(tag chơi thôi biết làm rồi\)

a: \(\widehat{C}=90^0-60^0=30^0\)

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

DO đó: ΔBAD=ΔBED

Suy ra: DA=DE

c: Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)

nên ΔDCB cân tại D

mà DE là đường cao

nên E là trung điểm của BC

=>EB=EC

mà EB=BA

và BA=AF

nên AF=EC

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

AF=EC

Do đó: ΔADF=ΔEDC

Suy ra: \(\widehat{ADF}=\widehat{EDC}\)

=>\(\widehat{ADF}+\widehat{ADE}=180^0\)

=>F,D,E thẳng hàng

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

23 tháng 11 2017

xét \(\Delta ABD\) và \(\Delta EBD\) có 

\(\hept{\begin{cases}\widehat{ABD}=\widehat{EBD}\\AB=BE\\chungBD\end{cases}}\)

=> 2 tam giác = nhau và có AD=DE(ĐPCM)

b)tí nữa có gì giải cho sau nhé, h mik phải ăn cơm rồi