K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

Xét tam giác ABC có :

\(bc^2\)=\(5^2\)=25

\(ab^2\)+\(ac^2\)=\(3^2\)+\(4^2\)=9+16=25   

Suy ra:\(bc^2=ab^2+ac^2\)(định lí py-ta-go đảo)

6 tháng 4 2019

a)Xét tứ giác ADHE có góc BAE=90 độ( tam giác ABC vuông tại A),góc ADH=90 độ(D là hình chiếu của H trên AB),góc AEH =90 độ(E là hình chiếu của H trên AC)=>ADHE là hcn

6 tháng 4 2019

b) Xét tam giác ABH và tam giác CBAcó

Chung góc B,góc BAC=góc BHC

=>Tam giác ABH đồng dạng với tam giác CBA(gg)=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=>AB2=BH.BC

25 tháng 11 2018

Bài 1:

Do E là hình chiếu của D trên AB:

=) DE\(\perp\)AB tại E

=) \(\widehat{DE\text{A}}\)=900

Do F là hình chiếu của D trên AC:

=) DF\(\perp\)AC

=) \(\widehat{DFA}\)=900

Xét tứ giác AEDF có :

\(\widehat{D\text{E}F}\)=\(\widehat{E\text{A}F}\)=\(\widehat{DFA}\) (cùng bằng 900)

=) Tứ giác AEDF là hình chữ nhật

Xét hình chữ nhật AEDF có :

AD là tia phân giác của \(\widehat{E\text{A}F}\)

=) AEDF là hình vuông

25 tháng 11 2018

cảm ơn bạn ngọc nguyễn

8 tháng 8 2021

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

Suy ra: AD=AE(1) và BD=BE

Ta có: F và D đối xứng nhau qua AC(gt)

nên AC là đường trung trực của FD

Suy ra: AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔABE và ΔABD có 

AB chung

AE=AD(cmt)

BE=BD(cmt)

Do đó: ΔABE=ΔABD(c-c-c)

Suy ra: ˆEAB=ˆDAB(hai góc tương ứng)

Xét ΔADC và ΔAFC có 

AD=AF(cmt)

AC chung

DC=FC(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: ˆDAC=ˆFAC(hai góc tương ứng)

Ta có: ˆEAF=ˆEAB+ˆBAD+ˆCAD+ˆFAC

=2⋅(ˆBAD+ˆCAD)

=2⋅600=1200

16 tháng 3 2022

a, Xét tam giác HBA và tam giác ABC có 

^B _ chung ; ^HBA = ^BAC = 900 

Vậy tam giác HBA ~ tan giác ABC (g.g) 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24}{5}cm\)

\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{36}{10}=\dfrac{18}{5}cm\)

c, -bạn tự cm nhé 

tam giác AEH ~ tam giác HEB (g.g) 

\(\dfrac{AE}{HE}=\dfrac{HE}{BE}\Rightarrow HE^2=AE.BE\)

tam giác AFH ~ tam giác HFC (g.g) 

\(\dfrac{AF}{HF}=\dfrac{FH}{FC}\Rightarrow FH^2=AF.FC\)

Cộng vế với vế ta được \(HE^2+FH^2=EF^2\)( theo định lí Pytago ) 

 

 

a: Ta có: D và E đối xứng nhau qua AB

nên AD=AE
=>ΔADE cân tại A

mà AB là đường cao

nên AB là phân giác của góc EAD(1)

Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)

Ta có: AE=AD

AF=AD

Do đó: AE=AF

b: Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ

c: Xét ΔADM và ΔAEM có

AD=AE
góc DAM=góc EAM

AM chung

DO đó: ΔADM=ΔAEM

SUy ra: góc ADM=góc AEM(3)

Xét ΔADN và ΔAFN có

AD=AF

góc DAN=góc FAN

AN chung

Do đó; ΔADN=ΔAFN

Suy ra: góc ADN=góc AFN(4)

Từ (3) và (4) suy ra góc ADM=góc ADN

hay DA là phân giác của góc MDN

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB và AC

nên MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN//BE và MN=BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AN(2)

Từ (1)và (2) suy ra AH là đường trung trực của MN

Xét ΔABC có 

E,M lần lượt là trung điểm của CB và BA

nên ME là đường trung bình

=>ME=CA/2=NH

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân